7Prolog
Eine Aufgabe für eine Million Dollar
Zahlen können jeden Menschen verzaubern. Besonders anfällig aber sind Mathematiker; sie verstehen es, Zahlen mit Bedeutung aufzuladen. So war es auch, als im Jahr 2000 einige der weltweit besten Mathematiker in Paris zu einer Konferenz zusammenkamen. Die Erwartungen waren groß: Sie würden die Gelegenheit zu einer Bestandsaufnahme ihres Forschungsfelds nutzen. Sie würden über das sprechen, woran kein Zweifel bestand und was sie so liebten – die Schönheit der Mathematik. Und sie würden sich die Zeit nehmen, sich gegenseitig zu loben und, noch wichtiger, zu träumen: von der Eleganz und Bedeutsamkeit zukünftiger Errungenschaften auf dem Gebiet der Mathematik.
Veranstaltet wurde diese Millennium-Konferenz vom Clay Mathematics Institute, einer gemeinnützigen Organisation zur Verbreitung und Erforschung mathematischer Ideen, die der Bostoner Geschäftsmann Landon Clay und seine Frau Lavinia gegründet hatten. Das Institut bestand seit zwei Jahren, hatte sich in einem Gebäude in der Nähe des Harvard Square in Cambridge im US-Bundesstaat Massachusetts ein schönes Büro eingerichtet und auch schon einige Forschungspreise vergeben. Nun aber verfolgte das Institut einen wirklich ehrgeizigen Plan. Es ging um die Zukunft der Mathematik. »Die mathematischen Probleme des zwanzigsten Jahrhunderts« sollten dokumentiert wer8den, »die sich einer Lösung am erfolgreichsten widersetzt haben und die wir am liebsten gelöst sähen« – so formulierte Andrew Wiles, der britische Zahlentheoretiker und berühmte Bezwinger des Letzten Satzes von Fermat, das Ziel. »Wir wissen nicht, wie noch wann [diese Fragen] gelöst werden, vielleicht in fünf, vielleicht in hundert Jahren. Aber wir glauben, dass wir mit den Lösungen dieser Probleme neue Aussichten auf mathematische Entdeckungen und Landschaften eröffnen werden.«1
In vielen Volkstraditionen ist die Sieben eine magische Zahl. Und als wollte es ein mathematisches Märchen in die Welt setzen, benannte das Clay Mathematics Institute exakt sieben Probleme und setzte für die Lösung jedes einzelnen von ihnen die sagenhafte Preissumme von einer Million Dollar aus. Im Lauf der Konferenz hielten die ungekrönten Könige der Mathematik Vorträge zu diesen sieben großen Fragen. Sir Michael Francis Atiyah, einer der bedeutendsten Mathematiker des letzten Jahrhunderts, sprach über die von Henri Poincaré 1904 formulierte Vermutung.2 Mit diesem Klassiker der mathematischen Topologie hätten sich, so Atiyah, schon »viele berühmte Mathematiker […] herumgeschlagen, aber das Problem ist noch immer ungelöst. Es hat viele falsche Beweise gegeben. Viele haben sich bemüht und Fehler gemacht. Manchmal entdeckten sie die Fehler selbst, manchmal waren es befreundete Mathematiker.« Die Zuhörer lachten, mit Sicherheit befanden sich einige unter ihnen, die bei ihren Lösungsversuchen der Poincaré-Vermutung auf dem Holzweg waren.
Die Lösung des Problems, so vermutete Atiyah, werde aus der Physik kommen. Und fügte scherzhaft hinzu, dies 9sei die Art von Hinweis, »die ein Lehrer, der ein Problem nicht lösen kann, seinem Schüler gibt, der es zu lösen versucht«. Und in der Tat arbeiteten einige unter den Zuhörern an Fragestellungen, von denen sie hofften, sie würden die Mathematik einem Sieg über die Poincaré-Vermutung näherbringen. Doch so recht mochte keiner von ihnen glauben, dass eine Lösung in Sicht sei.
Manche Mathematiker machen aus ihrer Arbeit an berühmten Problemen ein Geheimnis – auch Wiles tat dies, als er über Fermats Letzten Satz arbeitete. Im Allgemeinen aber halten sie sich gegenseitig über ihre Forschungen auf dem Laufenden. Fast jährlich haben Mathematiker mutmaßliche Beweise für die Poincaré-Vermutung veröffentlicht, aber keiner hatte bislang einer Überprüfung standgehalten. Der letzte große Durchbruch war fast zwanzig Jahre alt. 1982 legte der Amerikaner Richard Hamilton so etwas wie ein Konzept zur Lösung des Problems vor. Doch auch Hamilton musste feststellen, dass sein eigener Lösungsentwurf – sein Programm, wie die Mathematiker sagen – zu schwer zu verfolgen war, und seitdem hatte sich niemand mehr mit einer aussichtsreichen Alternative zu Wort gemeldet. Möglicherweise würde die Poincaré-Vermutung, wie die anderen sechs Millennium-Probleme des Clay Mathematics Institute auch, nie gelöst werden.
Sollte es dennoch gelingen, es wäre eine Heldentat. Alle diese Probleme haben jahrzehntelange Forschungsarbeit in Anspruch genommen, und so mancher Mathematiker hat das Zeitliche gesegnet, ohne auf die Frage, mit der er so lange gerungen hat, eine Antwort gefunden zu haben. »Das Clay Mathematics Institute möchte eine deutliche 10Botschaft aussenden, nämlich dass die Mathematik vor allem deshalb so wertvoll ist, weil es diese enorm schwierigen Probleme gibt, diese Himalayagipfel, diese Mount Evereste der Mathematik«, so der französische Mathematiker Alain Connes, ein anderer Gigant des zwanzigsten Jahrhunderts. »Und sollten wir den Gipfel tatsächlich erklimmen, dann wird das äußerst schwierig gewesen sein – vielleicht werden wir dafür sogar mit dem Leben bezahlen. Wahr bleibt indes, dass, sollten wir den Gipfel erreichen, die Aussicht fantastisch sein wird.«
In absehbarer Zukunft also war für keines der Millennium-Probleme eine Lösung zu erwarten. Gleichwohl legte das Clay Mathematics Institute klare Regeln fest, nach denen jeder der Preise vergeben wird. Die erste entspricht den üblichen wissenschaftlichen Gepflogenheiten: Die Lösung muss in einer anerkannten Fachzeitschrift präsentiert werden. Dann folgt eine zweijährige Wartefrist, die Mathematikern aus aller Welt die Gelegenheit gibt, die Lösung zu prüfen und zu einem Konsens über ihre Richtigkeit und die Urheberschaft zu gelangen. Nach Ablauf dieser Frist soll in einem dritten Schritt ein Ausschuss eine abschließende Empfehlung für die Verleihung des Preises geben. Erst dann, viertens, wird das Institut die ausgesetzte Preissumme von einer Million Dollar freigeben. Es werde, so Wiles’ Schätzung, mindestens fünf Jahre dauern, bis die erste Lösung kommen werde – vorausgesetzt, irgendeines dieser Probleme werde überhaupt gelöst –, so dass das Verfahren keineswegs umständlich erschien.
Und dann die Überraschung: Gerade einmal zwei Jahre später, nämlich im November 2002, stellte ein russischer Mathematiker seinen Beweis für Poincarés Vermutung ins 11Internet. Er war nicht der Erste, der behauptete, die Poincaré bewiesen zu haben – er war noch nicht einmal der erste Russe, der in ebendiesem Jahr einen angeblichen Beweis für die Vermutung ins Netz gestellt hatte –, doch wie sich herausstellte, war sein Beweis korrekt.
Und nun lief nichts mehr nach Plan – weder nach dem des Clay Mathematics Institute noch nach irgendeinem anderen, den ein Mathematiker für vernünftig halten konnte. Grigori Perelman, der Russe, der sich im Internet gemeldet hatte, hatte seine Arbeit nicht in einer anerkannten Fachzeitschrift veröffentlicht. Er zeigte sich auch nicht bereit, die Erklärungen für seinen Beweis, die von seinen Kollegen kamen, zu prüfen oder auch nur durchzusehen. Er lehnte Angebote der besten Universitäten der Welt ab. Er nahm, als sie ihm 2006 verliehen werden sollte, die Fields-Medaille nicht an, die höchste Auszeichnung für Mathematiker (quasi der Nobelpreis für Mathematik, den Alfred Nobel nicht gestiftet hat). Und schließlich zog er sich nicht nur aus den mathematischen Fachdiskussionen zurück, sondern sprach auch sonst mit praktisch keinem Menschen mehr.
Perelmans sonderbares Verhalten lieferte den Stoff, der der Poincaré-Vermutung eine Aufmerksamkeit verschaffte, wie sie wahrscheinlich keiner anderen Geschichte aus der Welt der Mathematik je zuteilgeworden ist.3 Die unerhört hohe Preissumme, die er wohl zu erwarten hatte, tat das ihre, um das Interesse anzuheizen, dazu kam eine plötzlich aufkommende Plagiatskontroverse, als nämlich zwei chinesische Mathematiker behaupteten, eigentlich hätten sie mit ihrer Arbeit die Vermutung schon bewiesen. Je mehr Rumor aber um Perelman entstand, desto mehr 12zog er sich selbst von allem zurück; sogar diejenigen, die ihn gut kannten, sagten, er sei »verschwunden«. Dabei lebte und lebt er nach wie vor in St. Petersburg, in der Wohnung, in der er bereits seit vielen Jahren wohnt. Gelegentlich ging er ans Telefon – aber nur um zu sagen, man möge ihn als tot betrachten.
Als ich begonnen habe, an diesem Buch zu arbeiten, suchte ich Antworten auf drei Fragen: Warum war Perelman in der Lage, Poincarés Vermutung zu beweisen, das heißt: Was unterschied seinen Geist von dem all der anderen Mathematiker, die sich zuvor erfolglos an der Vermutung abgearbeitet hatten? Warum gab er, als er den Beweis gefunden hatte, die Mathematik und auch sonst fast alles auf? Schließlich: Würde er sich weigern, den Preis des Clay Mathematics Institute anzunehmen, obwohl er ihn verdient hat und das Geld sicher...