Science of Synthesis – Volume 20b: Three Carbon--Heteroatom Bonds: Esters and Lactones | Peroxy Acids and R(CO)OX Compounds | R(CO)X, X = S, Se, Te | 1 |
Title page | 3 |
Imprint | 5 |
Preface | 6 |
Volume Editor's Preface | 8 |
Overview | 10 |
Table of Contents | 12 |
20.5 Product Class 5: Carboxylic Acid Esters | 40 |
20.5.1 Product Subclass 1: Alkyl Alkanoates | 40 |
20.5.1.1 Synthesis from Carbonic Acid Derivatives | 62 |
20.5.1.1.1 Method 1: Use of Carbonic Acid Diesters | 62 |
20.5.1.1.1.1 Variation 1: Reactions with Enolates | 62 |
20.5.1.1.1.2 Variation 2: Reactions with Carbanions without Stabilizing Electron-Withdrawing a-Heteroatom Groups | 67 |
20.5.1.1.1.3 Variation 3: Reaction with a-Heteroatom-Stabilized Carbanions | 70 |
20.5.1.1.1.4 Variation 4: Intramolecular Rearrangements | 72 |
20.5.1.1.2 Method 2: Use of Haloformates | 75 |
20.5.1.1.2.1 Variation 1: Reactions with Enolates | 76 |
20.5.1.1.2.2 Variation 2: Reaction with Carbanions without Stabilizing Electron-Withdrawing a-Heteroatom Groups | 80 |
20.5.1.1.2.3 Variation 3: Reaction with a-Heteroatom-Stabilized Carbanions | 85 |
20.5.1.1.2.4 Variation 4: Other Syntheses | 88 |
20.5.1.1.3 Method 3: Use of Cyanoformate Esters | 90 |
20.5.1.1.3.1 Variation 1: Reaction with Enolates | 91 |
20.5.1.1.3.2 Variation 2: Using Other Carbon Nucleophiles | 95 |
20.5.1.1.3.3 Variation 3: Novel Reactions | 97 |
20.5.1.1.4 Method 4: Use of Di-tert-butyl Dicarbonate | 99 |
20.5.1.2 Synthesis from Carboxylic Acids and Derivatives | 108 |
20.5.1.2.1 Method 1: Synthesis from Carboxylic Acids | 108 |
20.5.1.2.1.1 Variation 1: Phosphorus Activation of Alcohols (Mitsunobu Reaction) | 108 |
20.5.1.2.1.2 Variation 2: Dicyclohexylcarbodiimide Activation of Acids | 109 |
20.5.1.2.1.3 Variation 3: Direct Condensation of Acids and Alcohols Catalyzed by a Lewis Acid | 110 |
20.5.1.2.1.4 Variation 4: Direct Condensation of Acids and Alcohols Using Ammonium Salts | 111 |
20.5.1.2.2 Method 2: Synthesis from Acid Halides | 112 |
20.5.1.2.3 Method 3: Synthesis from Acid Anhydrides | 112 |
20.5.1.2.4 Method 4: Synthesis from Amides | 114 |
20.5.1.2.5 Method 5: Synthesis from 2-Alkyl-4,5-dihydrooxazoles | 114 |
20.5.1.2.6 Method 6: Synthesis from Nitriles | 115 |
20.5.1.2.7 Method 7: Synthesis from Ketenes | 116 |
20.5.1.2.7.1 Variation 1: Nucleophilic Addition of Alcohols | 116 |
20.5.1.2.7.2 Variation 2: Asymmetric Chlorination | 119 |
20.5.1.3 Synthesis from Aldehydes, Ketones, and Derivatives (Including Enol Ethers) | 122 |
20.5.1.3.1 Synthesis from Aldehydes | 122 |
20.5.1.3.1.1 Oxidative Processes | 122 |
20.5.1.3.1.1.1 Method 1: Using Manganese(IV) Oxide and Sodium Cyanide | 122 |
20.5.1.3.1.1.2 Method 2: Using Bromine | 124 |
20.5.1.3.1.1.2.1 Variation 1: Using Pyridinium Tribromide | 126 |
20.5.1.3.1.1.3 Method 3: Using Iodine | 127 |
20.5.1.3.1.1.4 Method 4: Using Pyridinium Dichromate | 128 |
20.5.1.3.1.1.5 Method 5: Using Sodium or Calcium Hypochlorites | 129 |
20.5.1.3.1.1.6 Method 6: Using N-Bromosuccinimide | 131 |
20.5.1.3.1.1.6.1 Variation 1: Using N-Bromosuccinimide and Alkoxytrimethylsilanes or Alkoxytrialkylstannanes | 131 |
20.5.1.3.1.1.7 Method 7: Using N-Iodosuccinimide | 132 |
20.5.1.3.1.1.8 Method 8: Using Caro's Acid | 133 |
20.5.1.3.1.1.9 Method 9: Using Oxone | 133 |
20.5.1.3.1.1.10 Method 10: Using Trichloroisocyanuric Acid | 134 |
20.5.1.3.1.1.11 Method 11: Using Transition-Metal Catalysts | 135 |
20.5.1.3.1.1.12 Method 12: Using Electrochemical Oxidation | 136 |
20.5.1.3.1.1.13 Method 13: Using Ozone | 138 |
20.5.1.3.1.1.14 Method 14: Using Hydrogen Peroxide | 139 |
20.5.1.3.1.2 Oxidation/Reduction Processes | 140 |
20.5.1.3.1.2.1 Method 1: Using the Tishchenko Reaction | 140 |
20.5.1.3.1.2.1.1 Variation 1: Using the Homo Aldol--Tishchenko Reaction | 142 |
20.5.1.3.1.2.1.2 Variation 2: Using the Hetero Aldol--Tishchenko Reaction | 142 |
20.5.1.3.1.2.1.3 Variation 3: Using the Evans--Tishchenko Reaction | 144 |
20.5.1.3.1.2.2 Method 2: Intramolecular Hydroacylation Reactions | 146 |
20.5.1.3.2 Synthesis from Ketones via the Baeyer--Villiger Reaction | 147 |
20.5.1.3.2.1 Method 1: Using Pertrifluoroacetic Acid | 148 |
20.5.1.3.2.2 Method 2: Using Peroxybenzoic Acids | 149 |
20.5.1.3.2.3 Method 3: Using Hydrogen Peroxide | 150 |
20.5.1.3.2.4 Method 4: Using Bis(trimethylsilyl) Peroxide | 151 |
20.5.1.3.2.5 Method 5: Using Enzymes | 152 |
20.5.1.3.3 Synthesis from Acetals | 152 |
20.5.1.3.3.1 Method 1: Using Ozone | 152 |
20.5.1.3.3.2 Method 2: Using Hypochlorous Acid | 154 |
20.5.1.3.3.3 Method 3: Using N-Bromosuccinimide | 155 |
20.5.1.3.3.4 Method 4: Using Peroxy Acids | 156 |
20.5.1.3.3.5 Method 5: Using Oxone | 157 |
20.5.1.3.3.6 Method 6: Using Caro's Acid | 158 |
20.5.1.3.3.7 Method 7: Using tert-Butyl Hydroperoxide and a Catalyst | 159 |
20.5.1.3.3.8 Method 8: Photochemical Oxidation | 160 |
20.5.1.3.3.9 Method 9: Using Potassium Permanganate | 160 |
20.5.1.3.4 Synthesis from Enol Ethers | 161 |
20.5.1.3.4.1 Method 1: Using Ozone | 161 |
20.5.1.3.4.2 Method 2: Using 3-Chloroperoxybenzoic Acid | 162 |
20.5.1.3.4.3 Method 3: Using Chromium(VI) Oxide | 163 |
20.5.1.3.4.4 Method 4: Using Pyridinium Chlorochromate | 164 |
20.5.1.3.5 Synthesis from a-Hydroxy Carbonyl Compounds and 1,2-Diones | 165 |
20.5.1.3.5.1 Method 1: Using Lead(IV) Acetate | 165 |
20.5.1.3.5.2 Method 2: Using Oxone or Potassium Peroxymonosulfate | 166 |
20.5.1.3.5.3 Method 3: Using Dioxygen | 168 |
20.5.1.3.5.4 Method 4: Using Electrochemistry | 169 |
20.5.1.4 Synthesis from Organometallic Compounds, Alkyl Halides, Primary Alcohols, or Ethers (Excluding Reactions with Carboxylic Acid Derivatives) | 174 |
20.5.1.4.1 Alkoxycarbonylation of Organometallic Compounds | 174 |
20.5.1.4.1.1 Method 1: Alkoxycarbonylation of Organolithium Compounds | 174 |
20.5.1.4.1.2 Method 2: Alkoxycarbonylation of Organomagnesium Compounds | 175 |
20.5.1.4.1.3 Method 3: Alkoxycarbonylation of Organotransition-Metal Compounds | 176 |
20.5.1.4.2 Alkoxycarbonylation of Alkyl Halides | 178 |
20.5.1.4.2.1 Method 1: Alkoxycarbonylation of Alkyl Halides Promoted by Acids | 178 |
20.5.1.4.2.2 Method 2: Alkoxycarbonylation of Alkyl Halides Promoted by Transition-Metal Catalysts | 179 |
20.5.1.4.2.3 Method 3: Alkoxycarbonylation of Alkyl Iodides Promoted by Photolysis | 181 |
20.5.1.4.3 Oxidation of Primary Alcohols | 181 |
20.5.1.4.3.1 Method 1: Oxidation by Halonium-Generating Combinations | 182 |
20.5.1.4.3.2 Method 2: Oxidation by Chromium(IV) Oxide | 183 |
20.5.1.4.3.3 Method 3: Transition-Metal-Catalyzed Oxidations | 183 |
20.5.1.4.4 Oxidation of Ethers, Silyl Ethers, or Stannyl Ethers | 184 |
20.5.1.4.4.1 Method 1: Oxidation of Ethers | 185 |
20.5.1.4.4.1.1 Variation 1: Oxidation by Halonium-Generating Combinations | 185 |
20.5.1.4.4.1.2 Variation 2: Oxidation by Stoichiometric Transition-Metal Reagents | 185 |
20.5.1.4.4.1.3 Variation 3: Transition-Metal-Catalyzed Oxidation | 186 |
20.5.1.4.4.2 Method 2: Oxidation of Silyl and Stannyl Ethers Using N-Bromosuccinimide | 187 |
20.5.1.5 Synthesis from Alkenes (Excluding Reactions with Carboxylic Acid Derivatives) | 192 |
20.5.1.5.1 Method 1: Oxidative C==C Bond Cleavage | 192 |
20.5.1.5.2 Method 2: Hydroesterification with Carbon Monoxide (Reppe Carbonylation) | 194 |
20.5.1.5.3 Method 3: Hydroesterification with Formate Esters | 199 |
20.5.1.5.4 Method 4: Cross Metathesis with Conjugated Esters | 203 |
20.5.1.5.5 Method 5: Synthesis via Hydroboration with Two-Carbon Homologation | 205 |
20.5.1.5.6 Method 6: Addition of Acetate Esters to Alkenes | 208 |
20.5.1.5.7 Method 7: Hydroacyloxylation | 210 |
20.5.1.5.7.1 Variation 1: Markovnikov Hydroacyloxylation Using Carboxylic Acids | 211 |
20.5.1.5.7.2 Variation 2: Anti-Markovnikov Hydroacyloxylation via Hydroboration | 215 |
20.5.1.5.8 Method 8: Allylic Acyloxylation | 215 |
20.5.1.5.8.1 Variation 1: Allylic Acyloxylation without Double-Bond Migration | 215 |
20.5.1.5.8.2 Variation 2: Allylic Acyloxylation with Double-Bond Migration | 218 |
20.5.1.5.9 Method 9: The Prévost Reaction | 219 |
20.5.1.6 Synthesis by Rearrangement | 224 |
20.5.1.6.1 Method 1: Baeyer--Villiger Oxidation | 224 |
20.5.1.6.2 Method 2: Cope Rearrangement | 228 |
20.5.1.6.2.1 Variation 1: Cope Rearrangement of Silyl Cyanohydrins | 228 |
20.5.1.6.2.2 Variation 2: Cope Rearrangement of Divinylcyclopropanes | 230 |
20.5.1.6.3 Method 3: Rearrangement of Vinylcyclopropanes | 233 |
20.5.1.6.4 Method 4: Rearrangement of Ketene Acetals | 236 |
20.5.1.6.4.1 Variation 1: Rearrangement of Ketene Acetals Derived from Ortho Esters (The Johnson Protocol) | 237 |
20.5.1.6.4.2 Variation 2: Rearrangement of Ketene Acetals Derived from Selenoxides | 240 |
20.5.1.6.5 Method 5: [2,3]-Wittig Rearrangement of a-(Alkenyloxy) Esters |
242 |
20.5.1.6.5.1 Variation 1: Via Lithium Enolates | 242 |
20.5.1.6.5.2 Variation 2: Via Tin, Titanium, and Zirconium Enolates | 245 |
20.5.1.6.6 Method 6: [3,3] Rearrangements of Allylic Esters | 246 |
20.5.1.6.7 Method 7: The Pummerer Rearrangement | 249 |
20.5.1.6.8 Method 8: Palladium-Catalyzed Carbonylation with Rearrangement | 251 |
20.5.1.6.9 Method 9: Favorskii Rearrangement | 252 |
20.5.1.6.10 Method 10: Arndt--Eistert and Related Reactions | 254 |
20.5.1.7 Synthesis with Retention of the Functional Group | 260 |
20.5.1.7.1 Conjugate Addition of a,ß-Unsaturated Esters | 260 |
20.5.1.7.1.1 Method 1: Addition of Organocopper Reagents | 260 |
20.5.1.7.1.2 Method 2: Addition of Organoborane Reagents | 262 |
20.5.1.7.1.3 Method 3: Addition of Nitroalkanes | 265 |
20.5.1.7.1.4 Method 4: Hydrohalogenation Reactions of Substituted Allenoates | 266 |
20.5.1.7.1.5 Method 5: Addition of Alkyl Radicals | 267 |
20.5.1.7.1.6 Method 6: Addition of Organomanganese(II) Reagents | 268 |
20.5.1.7.1.7 Method 7: Addition of Grignard Reagents | 268 |
20.5.1.7.1.8 Method 8: Nickel(0)-Catalyzed Conjugate Additions | 269 |
20.5.1.7.1.9 Method 9: Reductive C--C Bond Formation of a,ß-Unsaturated Esters | 270 |
20.5.1.7.1.10 Method 10: Addition of Allyltrimethylsilane | 271 |
20.5.1.7.2 Alkylations of Alkyl Alkanoates | 272 |
20.5.1.7.2.1 Method 1: a-Alkylation | 272 |
20.5.1.7.2.1.1 Variation 1: Alkylation with Strong Base and an Alkylating Agent | 272 |
20.5.1.7.2.1.2 Variation 2: Metal-Complex-Catalyzed a-Alkylation | 274 |
20.5.1.7.2.1.3 Variation 3: Michael Addition of Ester Enolates | 275 |
20.5.1.7.2.2 Method 2: Deconjugate Alkylation | 276 |
20.5.1.7.2.3 Method 3: Reductive Alkylation | 277 |
20.5.1.7.2.4 Method 4: Ene Reaction | 278 |
20.5.1.7.2.5 Method 5: Asymmetric Alkylation | 279 |
20.5.1.7.3 Cross-Coupling Reactions Catalyzed by Transition-Metal Complexes | 280 |
20.5.1.7.3.1 Method 1: Sonogashira Coupling | 280 |
20.5.1.7.3.2 Method 2: Hydrovinylation | 281 |
20.5.1.7.3.3 Method 3: Hydroformylation | 282 |
20.5.1.7.3.4 Method 4: Other Palladium-Complex-Catalyzed Cross Couplings | 283 |
20.5.1.7.4 Cleavage Reactions | 286 |
20.5.1.7.4.1 Method 1: Cleavage of Oxalates | 286 |
20.5.1.7.4.2 Method 2: Cleavage of Malonates by Decarboxylation | 287 |
20.5.1.7.4.3 Method 3: Cleavage of a-Cyano Esters by Decyanation | 288 |
20.5.1.7.4.4 Method 4: Cleavage of ß-Oxo Esters | 290 |
20.5.1.7.5 Oxidation Reactions | 291 |
20.5.1.7.5.1 Method 1: Ozonolysis | 291 |
20.5.1.7.5.2 Method 2: Photooxygenation | 292 |
20.5.1.7.6 Conjugate Reduction of a,ß-Unsaturated Esters | 292 |
20.5.1.7.6.1 Method 1: Use of Aluminum Hydride Reducing Agents | 293 |
20.5.1.7.6.2 Method 2: Use of Borohydride Reducing Agents | 293 |
20.5.1.7.6.3 Method 3: Reduction Using Samarium(II) Iodide | 295 |
20.5.1.7.6.4 Method 4: Use of Metals in Protic Solvents as Reducing Agents | 296 |
20.5.1.7.6.5 Method 5: Hydrostannation | 297 |
20.5.1.7.6.6 Method 6: Use of Hydrosilane Reducing Agents | 297 |
20.5.1.7.6.7 Method 7: Use of Sodium Dithionite Reducing Agents | 299 |
20.5.1.7.6.8 Method 8: Asymmetric Conjugate Reduction | 299 |
20.5.1.7.7 Selective Reduction of Distant Multiple Bonds in Unsaturated Esters | 300 |
20.5.1.7.7.1 Method 1: Reduction of Triple Bonds | 301 |
20.5.1.7.7.2 Method 2: Reduction of Double Bonds | 302 |
20.5.1.7.8 Chemoselective Hydrogenations | 302 |
20.5.1.7.8.1 Method 1: Heterogeneous Hydrogenations | 303 |
20.5.1.7.8.2 Method 2: Homogeneous Hydrogenations | 304 |
20.5.1.7.8.3 Method 3: Asymmetric Hydrogenations | 306 |
20.5.1.7.9 Synthesis from Lactones by Ring Opening | 308 |
20.5.1.7.9.1 Method 1: Ring Opening under Basic Conditions | 308 |
20.5.1.7.9.2 Method 2: Ring Opening under Acidic Conditions | 309 |
20.5.1.7.9.3 Method 3: Enzyme-Catalyzed Ring Opening | 310 |
20.5.1.7.10 Synthesis from Alkyl Formates | 311 |
20.5.1.7.10.1 Method 1: Hydroesterifications Catalyzed by Transition-Metal Complexes | 311 |
20.5.1.7.10.2 Method 2: Free-Radical Addition | 312 |
20.5.1.7.10.3 Method 3: Palladium-Catalyzed Reaction with Nitrobenzene | 313 |
20.5.1.7.10.4 Method 4: Carbonylation Reactions of Formates with Organic Halides | 314 |
20.5.1.7.11 Isomerizations | 314 |
20.5.1.7.11.1 Method 1: Deconjugation | 314 |
20.5.1.7.11.2 Method 2: Other Isomerizations | 316 |
20.5.1.7.12 Alkene Metathesis | 317 |
20.5.1.7.12.1 Method 1: Metathesis with Tungsten-Based Catalysts | 317 |
20.5.1.7.12.2 Method 2: Metathesis with Molybdenum-Based Catalysts | 318 |
20.5.1.7.12.3 Method 3: Metathesis with Ruthenium-Based Catalysts | 320 |
20.5.1.7.12.4 Method 4: Metathesis with Rhenium-Based Catalysts | 322 |
20.5.1.7.13 Transesterification | 323 |
20.5.1.7.13.1 Method 1: Transesterification without Catalysis | 323 |
20.5.1.7.13.2 Method 2: Transesterification with Chemical Catalysis | 324 |
20.5.1.7.13.2.1 Variation 1: By Brønsted Acids | 324 |
20.5.1.7.13.2.2 Variation 2: By Lewis Acids | 325 |
20.5.1.7.13.2.3 Variation 3: By Solid Acids | 327 |
20.5.1.7.13.2.4 Variation 4: By Bases | 328 |
20.5.1.7.13.3 Method 3: Transesterification with Enzymes | 329 |
20.5.1.7.14 Kinetic Resolution | 331 |
20.5.1.7.14.1 Method 1: Resolution with Enzymatic Catalysis | 331 |
20.5.1.7.14.2 Method 2: Non-Enzymatic Resolution | 333 |
20.5.2 Product Subclass 2: Arenedicarboxylic Acid Esters | 344 |
20.5.2.1 Synthesis of Product Subclass 2 | 344 |
20.5.2.1.1 Method 1: Direct Esterification of Arenedicarboxylic Acids Using Alkyl Halides | 344 |
20.5.2.1.2 Method 2: Direct Esterification of Arenedicarboxylic Acids and Anhydrides Using Alcohols | 345 |
20.5.2.1.2.1 Variation 1: Using a Morpholinium Salt as Catalyst | 345 |
20.5.2.1.2.2 Variation 2: Using Heteropolyacids as Catalysts | 346 |
20.5.2.1.3 Method 3: Direct Esterification of Arenedicarboxylic Acids Using Pentafluorophenol and N,N'-Dicyclohexylcarbodiimide | 347 |
20.5.2.1.4 Method 4: Synthesis of Arene-1,2-dicarboxylic Acid Esters by Diels--Alder Reaction Followed by Aromatization | 347 |
20.5.2.1.4.1 Variation 1: From 2H-Pyran-2-ones | 347 |
20.5.2.1.4.2 Variation 2: From 4-Nitrostyrene | 349 |
20.5.2.1.4.3 Variation 3: From Substituted Benzo[c]furan | 350 |
20.5.2.1.5 Methods 5: Miscellaneous Methods | 350 |
20.5.3 Product Subclass 3: Butenedioic and Butynedioic Acid Esters | 354 |
20.5.3.1 Synthesis of Product Subclass 3 | 354 |
20.5.3.1.1 Method 1: Anhydride Cleavage | 354 |
20.5.3.1.1.1 Variation 1: Solvolysis of Maleic Anhydride | 354 |
20.5.3.1.1.2 Variation 2: Using Lactam Acetals | 355 |
20.5.3.1.2 Method 2: Carbenoid Dimerization | 356 |
20.5.3.1.2.1 Variation 1: Ruthenium-Mediated Reactions | 356 |
20.5.3.1.2.2 Variation 2: Rhodium-Mediated Reactions | 358 |
20.5.3.1.2.3 Variation 3: Copper-Mediated Reactions | 358 |
20.5.3.1.3 Method 3: Phosphorus-Based Alkenations | 359 |
20.5.3.1.3.1 Variation 1: From Thiiranes | 359 |
20.5.3.1.3.2 Variation 2: From Lithiophosphoranes | 361 |
20.5.3.1.4 Method 4: 1,4-Addition of Alcohols | 362 |
20.5.3.1.4.1 Variation 1: Organic Base Mediated Reactions | 362 |
20.5.3.1.4.2 Variation 2: Titanium-Mediated Reactions | 362 |
20.5.3.1.4.3 Variation 3: Lead-Mediated Reactions | 363 |
20.5.3.1.4.4 Variation 4: Silver-Mediated Reactions | 364 |
20.5.3.1.5 Method 5: Elimination Protocols | 365 |
20.5.3.1.5.1 Variation 1: From Aspartate Esters | 365 |
20.5.3.1.5.2 Variation 2: From Monohalosuccinic Acid Esters | 366 |
20.5.3.1.5.3 Variation 3: From Hydroxysuccinic Acid Esters | 367 |
20.5.3.1.5.4 Variation 4: From Dibromosuccinic Acid Esters with Dimethylformamide | 367 |
20.5.3.1.5.5 Variation 5: From Tartrates via Phosphinate Activation | 368 |
20.5.3.1.5.6 Variation 6: From Tartrates via Cyclic Sulfates | 369 |
20.5.3.1.5.7 Variation 7: From Bromosuccinic Acid Esters | 370 |
20.5.3.1.5.8 Variation 8: From Dibromosuccinates with Sodium Dithionite | 371 |
20.5.3.1.5.9 Variation 9: From vic-Diols via 1,3-Dioxolanes | 372 |
20.5.3.1.5.10 Variation 10: From vic-Diols via Phosphonium Sulfates | 373 |
20.5.3.1.5.11 Variation 11: From vic-Diols with Sodium Sulfide | 375 |
20.5.3.1.5.12 Variation 12: From vic-Diols via Thermal Elimination | 375 |
20.5.3.1.6 Method 6: Semihydrogenation | 376 |
20.5.3.1.6.1 Variation 1: Using Homogeneous Palladium Catalysts | 376 |
20.5.3.1.6.2 Variation 2: Using Hydrosilane Reagents | 377 |
20.5.3.1.6.3 Variation 3: Using Nickel Boride Catalysts | 378 |
20.5.3.1.6.4 Variation 4: Using a Polymer-Supported Palladium Catalyst | 379 |
20.5.3.1.6.5 Variation 5: Using a Rhodium Hydride Complex | 379 |
20.5.3.1.6.6 Variation 6: Using an Indium Hydride Complex | 380 |
20.5.3.1.7 Methods 7: Other Methods | 381 |
20.5.3.1.7.1 Variation 1: Phosphine Additions to Butynedioates | 381 |
20.5.3.1.7.2 Variation 2: Carbene Additions to Maleic Anhydride Derivatives | 382 |
20.5.4 Product Subclass 4: Alkanedioic Acid Esters | 384 |
20.5.4.1 Synthesis of Product Subclass 4 | 384 |
20.5.4.1.1 Method 1: Esterification of Oxalic Acid by the Fischer Method | 384 |
20.5.4.1.2 Method 2: Oxalate Esters by Nucleophilic Acyl Substitution on Activated Oxalyl Derivatives | 385 |
20.5.4.1.2.1 Variation 1: From Oxalyl Chloride | 385 |
20.5.4.1.2.2 Variation 2: From Ethyl Cyano(oxo)acetate | 385 |
20.5.4.1.3 Method 3: Oxalate Esters by Oxidative Methods | 386 |
20.5.4.1.3.1 Variation 1: Palladium-Mediated Oxidative Coupling of Carbon Monoxide | 386 |
20.5.4.1.3.2 Variation 2: Oxidative Cleavage of 2-Chlorobuta-1,3-diene | 387 |
20.5.4.1.4 Method 4: Esterification of Malonic Acids | 387 |
20.5.4.1.4.1 Variation 1: Using Isobutene | 387 |
20.5.4.1.4.2 Variation 2: Via the Monoacid Chloride | 388 |
20.5.4.1.4.3 Variation 3: Via Mixed Carbonic Anhydrides | 389 |
20.5.4.1.5 Method 5: Malonate Esters by Alkylation of Malonate Derivatives | 390 |
20.5.4.1.5.1 Variation 1: Via Monoalkylation of Malonate Diesters | 390 |
20.5.4.1.5.2 Variation 2: Phase-Transfer-Catalyzed Dialkylation of Malonates | 391 |
20.5.4.1.5.3 Variation 3: Intramolecular Cyclization of .-(Bromoalkyl)malonates | 392 |
20.5.4.1.5.4 Variation 4: Transition-Metal-Mediated Alkylations | 393 |
20.5.4.1.5.5 Variation 5: Alkylation--Decarboxylation of Methanetricarboxylates | 393 |
20.5.4.1.5.6 Variation 6: Via Alkylation of Meldrum's Acid | 394 |
20.5.4.1.6 Method 6: Malonate Esters by Acylation of Malonate Derivatives | 395 |
20.5.4.1.6.1 Variation 1: Via Ethoxymagnesium Malonates | 395 |
20.5.4.1.6.2 Variation 2: C-Acylation Using Magnesium Oxide | 396 |
20.5.4.1.6.3 Variation 3: C-Acylation Using Soft Enolization | 397 |
20.5.4.1.7 Method 7: Malonate Esters by Conjugate Additions to Malonate Derivatives | 398 |
20.5.4.1.7.1 Variation 1: Reduction of Alkylidenemalonates with Sodium Cyanoborohydride | 398 |
20.5.4.1.7.2 Variation 2: Grignard Additions to Alkylidenemalonates | 398 |
20.5.4.1.7.3 Variation 3: Phase-Transfer-Catalyzed Michael Addition of Malonate Enolates | 399 |
20.5.4.1.8 Method 8: Malonate Esters by Knoevenagel Condensation of Malonates | 400 |
20.5.4.1.8.1 Variation 1: With Acetaldehyde and Acetic Anhydride | 400 |
20.5.4.1.8.2 Variation 2: With Paraformaldehyde and Copper(II) Acetate | 400 |
20.5.4.1.8.3 Variation 3: From Pyrolysis of Malonate Diels--Alder Adducts | 401 |
20.5.4.1.9 Method 9: Malonate Esters by Claisen Condensations with Oxalic Acid Esters | 402 |
20.5.4.1.10 Method 10: Malonate Esters by Arylation of Malonate Derivatives | 403 |
20.5.4.1.10.1 Variation 1: Via Electrophilic Aromatic Substitution | 403 |
20.5.4.1.10.2 Variation 2: Via Nucleophilic Aromatic Substitution on Malonyl--Iron--Arene Complexes | 405 |
20.5.4.1.11 Method 11: Malonate Esters by Addition of Allylsilanes to Activated Cyclopropanes | 405 |
20.5.4.1.12 Method 12: Malonate Esters by Dichlorination of Malonates with Trifluoromethanesulfonyl Chloride | 406 |
20.5.4.1.13 Method 13: Esterification of Succinic Acid | 407 |
20.5.4.1.14 Method 14: Succinate Esters by Reduction of Butenedioates | 407 |
20.5.4.1.14.1 Variation 1: Lewis Acid Mediated Reduction of Maleates | 407 |
20.5.4.1.14.2 Variation 2: Ruthenium-Mediated Hydrogenation of 2-Methylenesuccinate Esters | 408 |
20.5.4.1.14.3 Variation 3: Rhodium-Mediated Hydrogenation of 2-Methylenesuccinate Esters | 409 |
20.5.4.1.15 Method 15: Succinate Esters by Alkene Dimerization | 410 |
20.5.4.1.15.1 Variation 1: Radical-Based Methods | 410 |
20.5.4.1.15.2 Variation 2: Oxidative Dimerization of Titanium Enolates | 411 |
20.5.4.1.15.3 Variation 3: Oxidative Dimerization of Organocuprates | 412 |
20.5.4.1.16 Method 16: Succinate Esters by Rearrangement Reactions | 413 |
20.5.4.1.16.1 Variation 1: Ring Opening of Cyclopropanes | 413 |
20.5.4.1.16.2 Variation 2: Malonate Displacements | 414 |
20.5.4.1.16.3 Variation 3: Allylmalonate Rearrangement | 415 |
20.5.4.1.17 Method 17: Succinate Esters by Carbonylation | 416 |
20.5.4.1.17.1 Variation 1: Dicarbonylation of But-2-enes | 416 |
20.5.4.1.17.2 Variation 2: Dicarbonylation of Terminal Alkenes and Cycloalkenes | 417 |
20.5.4.1.17.3 Variation 3: Monocarbonylation of Acrylates | 419 |
20.5.4.1.17.4 Variation 4: From Allylic Carbonates | 420 |
20.5.4.1.18 Method 18: Succinate Esters by Conjugate Additions | 420 |
20.5.4.1.18.1 Variation 1: Reaction of Thiols with Butenedioates | 420 |
20.5.4.1.18.2 Variation 2: Reaction of Enamines with Nitroalkenes | 421 |
20.5.4.1.18.3 Variation 3: Reaction of Cyanohydrins with Butenedioates | 422 |
20.5.4.1.19 Method 19: Succinate Esters by Stobbe Condensations | 423 |
20.5.4.1.20 Method 20: Succinate Esters by a-Alkylation of Succinoyl Derivatives | 424 |
20.5.4.1.20.1 Variation 1: Using an Organometallic Auxiliary | 424 |
20.5.4.1.20.2 Variation 2: Using Malate Esters | 425 |
20.5.4.1.21 Method 21: Succinate Esters by Asymmetric Nucleophilic Addition Using a Chiral Ketone Auxiliary | 426 |
20.5.4.1.22 Method 22: Succinate Esters by Stereoselective [2,3]-Wittig Rearrangement | 427 |
20.5.4.1.23 Method 23: Succinate Esters by Asymmetric Alkylation Using N-Acyloxazolidinones (Evans Asymmetric Alkylation) | 428 |
20.5.4.1.23.1 Variation 1: Application to the Synthesis of a Pharmaceutical Agent | 429 |
20.5.4.1.24 Method 24: Succinate Esters by Aldol Approaches | 430 |
20.5.4.1.24.1 Variation 1: Using Chiral Imines | 430 |
20.5.4.1.24.2 Variation 2: 2-Substituted 2-Hydroxysuccinates Using a Stoichiometric Chiral Tin Lewis Acid | 431 |
20.5.4.1.24.3 Variation 3: 2,3-Disubstituted 2-Hydroxysuccinates Using a Stoichiometric Chiral Tin Lewis Acid | 432 |
20.5.4.1.24.4 Variation 4: Using Chiral N-Acylhydrazones | 433 |
20.5.4.1.24.5 Variation 5: Using a Catalytic Chiral Titanium Lewis Acid | 434 |
20.5.4.1.24.6 Variation 6: Using a Catalytic Chiral Copper Lewis Acid | 435 |
20.5.4.1.24.7 Variation 7: Use of a Fluorous Lewis Acid Catalyst | 436 |
20.5.4.1.24.8 Variation 8: Use of a Catalytic Tin Lewis Acid | 438 |
20.5.4.1.24.9 Variation 9: Application of a Chiral Tin Lewis Acid in Total Synthesis | 439 |
20.5.4.1.24.10 Variation 10: Use of a Cationic Scandium Lewis Acid | 440 |
20.5.5 Product Subclass 5: Alkynyl Alkanoates | 444 |
20.5.5.1 Synthesis of Product Subclass 5 | 444 |
20.5.5.1.1 Method 1: Metalation and Rearrangement of a,a-Dihalo Ketones (Alkynolate Anions) | 444 |
20.5.5.1.2 Method 2: Reaction of Carboxylic Acids with Alkynyliodonium Salts | 445 |
20.5.5.1.2.1 Variation 1: Using Preformed Alkynyliodonium Ions | 445 |
20.5.5.1.2.2 Variation 2: Using (Diacyliodo)arenes | 446 |
20.5.6 Product Subclass 6: Aryl Alkanoates | 448 |
20.5.6.1 Synthesis of Product Subclass 6 | 449 |
20.5.6.1.1 Method 1: Acylation of Phenols | 449 |
20.5.6.1.1.1 Variation 1: Direct Acylation | 449 |
20.5.6.1.1.2 Variation 2: Lewis Acid Catalyzed Acylation | 454 |
20.5.6.1.1.3 Variation 3: Lewis Base Catalyzed Acylation | 456 |
20.5.6.1.2 Method 2: Oxidation of Arenes | 457 |
20.5.6.1.2.1 Variation 1: Acyl Peroxide Mediated Oxidation | 457 |
20.5.6.1.2.2 Variation 2: Lead(IV) Acetate Mediated Oxidation | 459 |
20.5.6.1.3 Method 3: Displacement of Diazonium Groups by Nucleophiles (The Sandmeyer Reaction) | 459 |
20.5.7 Product Subclass 7: Alkenyl Alkanoates | 462 |
20.5.7.1 Synthesis of Product Subclass 7 | 466 |
20.5.7.1.1 Method 1: O-Acylation of Enolates | 466 |
20.5.7.1.1.1 Variation 1: Kinetic Deprotonation | 466 |
20.5.7.1.1.2 Variation 2: Fluoride-Catalyzed O-Acylation of Enolates | 469 |
20.5.7.1.1.3 Variation 3: O-Acylation of Enolates and Enols Generated under Equilibrating Conditions | 471 |
20.5.7.1.2 Method 2: O-Acylation of Aldehyde Enolates Derived from Alkynoate Anions | 473 |
20.5.7.1.3 Method 3: Metal-Catalyzed Alkoxycarbonylation of Alkynes | 474 |
20.5.7.1.4 Method 4: Cross-Coupling of Alkenylmercury Halides or Alkenyl Halides with Metal Acetate Salts | 481 |
20.5.7.1.5 Method 5: Coupling of Fischer Carbenes with Acid Chlorides | 483 |
20.5.7.1.6 Method 6: Alkenation Reactions | 483 |
20.5.8 Product Subclass 8: 2-Oxo- and 2-Imino-Substituted Alkanoic Acid Esters, and Related Compounds | 488 |
20.5.8.1 Synthesis of Product Subclass 8 | 488 |
20.5.8.1.1 Method 1: Esterification of 2-Heteroatom-Substituted Acids | 488 |
20.5.8.1.2 Method 2: Hydrolysis of 2-Heteroatom-Substituted Esters | 491 |
20.5.8.1.3 Method 3: Alcoholysis of 2-Heteroatom-Substituted Nitriles | 494 |
20.5.8.1.4 Method 4: Oxidation Reactions | 495 |
20.5.8.1.4.1 Variation 1: Oxidation of a-Hydroxy Esters | 495 |
20.5.8.1.4.2 Variation 2: Oxidation of a-Diazo Esters | 497 |
20.5.8.1.4.3 Variation 3: Oxidation of 3-Oxo-2-(triphenylphosphoranylidene)propanoates | 498 |
20.5.8.1.4.4 Variation 4: Oxidation of 2-Alkylidene Esters | 499 |
20.5.8.1.5 Method 5: Addition of Organometallic Reagents to Oxalates | 500 |
20.5.8.1.6 Method 6: Friedel--Crafts Acylation of Buta-1,3-dienes, Arenes, and Hetarenes | 503 |
20.5.8.1.7 Method 7: Sigmatropic Rearrangements | 505 |
20.5.8.1.7.1 Variation 1: Claisen Rearrangement of Allyl Vinyl Ethers | 505 |
20.5.8.1.7.2 Variation 2: Stevens Rearrangement of N,N-Dimethyl-N-(phenylethynyl)glycinium Bromides | 506 |
20.5.8.1.8 Method 8: Hetero-Diels--Alder Reactions | 507 |
20.5.8.1.9 Method 9: Aldol Condensations | 507 |
20.5.9 Product Subclass 9: 2,2-Diheteroatom-Substituted Alkanoic Acid Esters | 512 |
20.5.9.1 Synthesis of Product Subclass 9 | 512 |
20.5.9.1.1 Method 1: Esterification of 2,2-Diheteroatom-Substituted Acids | 512 |
20.5.9.1.2 Method 2: Synthesis by Acetal Formation | 514 |
20.5.9.1.2.1 Variation 1: Formation of Acetals and Hemiacetals | 514 |
20.5.9.1.2.2 Variation 2: Formation of a,a-Diamino Esters | 516 |
20.5.9.1.2.3 Variation 3: Formation of Thioacetals | 517 |
20.5.9.1.3 Method 3: Alcoholysis of 2,2-Diheteroatom-Substituted Nitriles | 517 |
20.5.9.1.4 Method 4: Oxidation of Alkene Derivatives | 518 |
20.5.9.1.5 Method 5: Synthesis by Nucleophilic Attack of the a-Carbon of Esters | 520 |
20.5.9.1.5.1 Variation 1: Nucleophilic Substitution at the a-Carbon of 2,2-Diheteroatom-Substituted Esters | 520 |
20.5.9.1.5.2 Variation 2: Nucleophilic Substitution at the a-Carbon of Diesters and ß-Oxo Esters | 521 |
20.5.9.1.5.3 Variation 3: Metal-Mediated C--C Bond Formation | 522 |
20.5.9.1.6 Method 6: Radical-Mediated Transformations of 2-Halo-Substituted Esters | 523 |
20.5.9.1.7 Method 7: 1,3-Allylic Rearrangement of a Chiral Acetal | 524 |
20.5.9.1.8 Method 8: Rearrangement of (ortho-Nitroarylidene)malonates | 524 |
20.5.10 Product Subclass 10: 2-Aminoalkanoic Acid Esters (a-Amino Acid Esters) | 528 |
20.5.10.1 Synthesis of Product Subclass 10 | 528 |
20.5.10.1.1 a,ß-Didehydroamino Acid Esters | 528 |
20.5.10.1.1.1 Synthesis of a,ß-Didehydroamino Acid Esters through Palladium(0)-Catalyzed Cross-Coupling Reactions | 528 |
20.5.10.1.1.1.1 Method 1: Suzuki Coupling of ß-Bromoamidoacrylates with Aryl- and Vinylboronic Acids | 528 |
20.5.10.1.1.1.2 Method 2: Heck Coupling of Amidoacrylates with Aryl and Vinyl Halides | 529 |
20.5.10.1.1.2 Synthesis of a,ß-Didehydroamino Esters through Elimination | 530 |
20.5.10.1.1.2.1 Method 1: Erlenmeyer Condensation | 530 |
20.5.10.1.1.2.2 Method 2: Horner--Emmons Condensation | 531 |
20.5.10.1.2 2-Aminoalkanoic Acid Esters | 532 |
20.5.10.1.2.1 Introduction of the Side Chain: Alkylation of Glycine and Related Chiral Enolates | 533 |
20.5.10.1.2.1.1 Method 1: Alkylation of Chiral Cyclic Enolates | 533 |
20.5.10.1.2.1.1.1 Variation 1: Alkylation of Chiral Bis-lactim Ethers | 533 |
20.5.10.1.2.1.1.2 Variation 2: Alkylation of Chiral Oxazinones | 535 |
20.5.10.1.2.1.2 Method 2: Alkylation of Chiral Acyclic Schiff Bases | 536 |
20.5.10.1.2.1.3 Method 3: Alkylation Utilizing Chiral Phase-Transfer Reagents | 538 |
20.5.10.1.2.1.4 Method 4: Metal-Mediated Glycine Enolate Alkylation | 540 |
20.5.10.1.2.1.4.1 Variation 1: Palladium-Catalyzed Allylation of Glycine Derivatives | 540 |
20.5.10.1.2.1.4.2 Variation 2: Gold-Catalyzed Aldol Reactions | 543 |
20.5.10.1.2.1.4.3 Variation 3: Titanium-Mediated Aldol Reactions | 544 |
20.5.10.1.2.1.4.4 Variation 4: Aluminum--Salen-Catalyzed Aldol Reactions of 5-Alkoxyoxazoles | 546 |
20.5.10.1.2.2 Introduction of the a-Amino Group: Nucleophilic Amination | 547 |
20.5.10.1.2.2.1 Method 1: Intermolecular Nucleophilic Addition to Chiral Epoxides | 547 |
20.5.10.1.2.2.2 Method 2: Intramolecular Nucleophilic Addition to Epoxides | 548 |
20.5.10.1.2.2.3 Method 3: Nucleophilic Displacement of Halides | 550 |
20.5.10.1.2.2.4 Method 4: Nucleophilic Displacement of Sulfonic Esters and Cyclic Sulfates | 551 |
20.5.10.1.2.2.4.1 Variation 1: Displacement of Trifluoromethanesulfonates | 551 |
20.5.10.1.2.2.4.2 Variation 2: Opening Cyclic Sulfates | 552 |
20.5.10.1.2.2.5 Method 5: Mitsunobu Displacement of an a-Hydroxy Group | 553 |
20.5.10.1.2.2.6 Method 6: Nucleophilic Addition to p-Allylpalladium Intermediates | 553 |
20.5.10.1.2.3 Introduction of the a-Amino Group: Electrophilic Amination of Enolates | 555 |
20.5.10.1.2.3.1 Method 1: Proline Organocatalysis | 555 |
20.5.10.1.2.4 Introduction of the a-Hydrogen: Asymmetric Hydrogenation of a,ß-Didehydroamino Acid Esters | 556 |
20.5.10.1.2.4.1 Method 1: Homogeneous Catalysis | 556 |
20.5.10.1.2.4.1.1 Variation 1: Cationic Rhodium Complexes of Chiral C2-Symmetric Bisphosphines | 559 |
20.5.10.1.2.4.1.2 Variation 2: Cationic Rhodium Complexes of Chiral C2-Symmetric Bisphosphinites | 560 |
20.5.10.1.2.4.1.3 Variation 3: Cationic Rhodium Complexes of P-Chirogenic Phosphines | 561 |
20.5.10.1.2.5 Introduction of the a-Hydrogen: Asymmetric Michael Addition | 561 |
20.5.10.1.2.5.1 Method 1: Enantioselective Michael Addition--Hydrogen Atom Transfer | 561 |
20.5.10.1.2.5.2 Method 2: Diastereoselective Organocuprate Michael Addition to Chiral Piperazine-2,5-dione Acceptors | 562 |
20.5.10.1.2.6 Introduction of Carboxylate: Asymmetric Addition of Nitriles to Imines (Strecker Synthesis) | 564 |
20.5.10.1.2.6.1 Method 1: Chiral Binuclear Zirconium-Complex-Catalyzed Strecker Synthesis | 564 |
20.5.10.1.2.6.2 Method 2: Chiral Aluminum--Salen Complex Catalyzed Strecker Synthesis | 565 |
20.5.10.1.2.7 Introduction of the Side Chain: Asymmetric Addition to Imino Esters | 567 |
20.5.10.1.2.7.1 Method 1: Proline-Catalyzed Mannich Additions to Imino Esters | 567 |
20.5.10.1.2.7.2 Method 2: Copper-Catalyzed Alkylations of Imino Esters | 568 |
20.5.10.1.2.7.3 Method 3: Catalytic Asymmetric Mannich Additions to Imino Esters | 568 |
20.5.10.1.2.7.4 Method 4: Catalytic Asymmetric Aza-Henry Addition to Imino Esters | 569 |
20.5.10.1.2.7.5 Method 5: Palladium-Catalyzed Silyl Enol Ether Additions of Imino Esters | 571 |
20.5.10.1.2.7.6 Method 6: Catalytic Asymmetric Aromatic Additions to Imino Esters | 572 |
20.5.10.1.2.7.7 Method 7: Organometallic Additions to Chiral Imino Esters | 573 |
20.5.10.1.2.7.8 Method 8: Mannich-Type Reaction of Electron-Rich Aromatic Compounds with Chiral Imino Lactones | 574 |
20.5.10.1.2.7.9 Method 9: Rhodium-Catalyzed Addition of Arylboronic Acids to N-(tert-Butylsulfinyl)imino Esters | 575 |
20.5.10.1.2.8 Introduction of the Side Chain: Diels--Alder Cycloaddition Reactions | 577 |
20.5.10.1.2.8.1 Method 1: Catalytic Asymmetric Diels--Alder Addition to Chiral Imino Esters | 577 |
20.5.10.1.2.8.2 Method 2: Asymmetric Diels--Alder Addition to Chiral Imino Esters | Chiral Menthyl Derivatives | 578 |
20.5.10.1.2.8.3 Method 3: Asymmetric Diels--Alder Addition to Chiral Imino Esters | Chiral 1-Phenylethylamine Derivatives | 578 |
20.5.10.1.2.9 Introduction of the a-Nitrogen: Sigmatropic Rearrangements | 579 |
20.5.10.1.2.9.1 Method 1: Rearrangement of Allylic Trichloroacetimidates | 579 |
20.5.10.1.2.9.1.1 Variation 1: Thermal Rearrangement of Chiral Allylic Trichloroacetimidates | 580 |
20.5.10.1.2.9.1.2 Variation 2: Enantioselective Palladium-Catalyzed Rearrangement of Prochiral Allylic Trichloroacetimidates | 581 |
20.5.10.1.2.10 Addition of the Carboxylate Group: Rearrangements | 582 |
20.5.10.1.2.10.1 Method 1: Photolysis of Chromium--Carbene Complexes | 582 |
20.5.10.1.3 a-Alkyl-a-aminoalkanoic Acid Esters | 583 |
20.5.10.1.3.1 Introduction of the Side Chain: Alkylation of Chiral Amino Acid Enolates | 584 |
20.5.10.1.3.1.1 Method 1: Alkylation of Bis-lactim Ethers | 584 |
20.5.10.1.3.1.2 Method 2: Alkylation of Schiff Bases | 585 |
20.5.10.1.3.1.2.1 Variation 1: Alkylation of Galactodialdehyde Aldimines | 585 |
20.5.10.1.3.1.2.2 Variation 2: Alkylation of Camphor-Derived Sultams | 586 |
20.5.10.1.3.1.3 Method 3: Transition-Metal-Catalyzed Asymmetric Allylic Alkylation of Azlactones | 587 |
20.5.10.1.3.1.3.1 Variation 1: Palladium-Catalyzed Asymmetric Allylic Alkylation of Azlactones | 588 |
20.5.10.1.3.1.3.2 Variation 2: Molybdenum-Catalyzed Asymmetric Allylic Alkylation of Azlactones | 589 |
20.5.10.1.3.2 Introduction of the Side Chain: Rearrangements | 590 |
20.5.10.1.3.2.1 Method 1: Rearrangement of O-Acylated Azlactones | 590 |
20.5.10.1.3.3 Introduction of the a-Amino Group: Rearrangement of a,a-Dialkyl-ß-carbonyl Carboxylic Acid Esters | 591 |
20.5.10.1.3.3.1 Method 1: Curtius Rearrangement of a,a-Dialkyl ß-Ester Carboxylic Acids | 592 |
20.5.10.1.3.3.2 Method 2: Hofmann Rearrangement of a,a-Dialkyl-ß-amido Esters | 592 |
20.5.10.1.3.3.3 Method 3: Schmidt Rearrangement of ß-Oxo Esters | 593 |
20.5.10.1.3.3.4 Method 4: Beckmann Rearrangement of ß-Oxime Esters | 594 |
20.5.11 Product Subclass 11: 2-Heteroatom-Substituted Alkanoic Acid Esters | 600 |
20.5.11.1 Synthesis of Product Subclass 11 | 600 |
20.5.11.1.1 2-Haloalkanoates | 600 |
20.5.11.1.1.1 2-Fluoroalkanoates | 600 |
20.5.11.1.1.1.1 Method 1: Electrophilic Fluorination of Alkanoates | 601 |
20.5.11.1.1.1.1.1 Variation 1: Fluorination with N-Fluorobis(trifluoromethylsulfonyl)amine | 601 |
20.5.11.1.1.1.1.2 Variation 2: Fluorination with 2-Fluoro-1,3,2-benzodithiazole 1,1,3,3-Tetraoxide | 602 |
20.5.11.1.1.1.1.3 Variation 3: Catalytic Asymmetric Fluorination of a-Cyano Esters by Treatment with Chiral Palladium Complexes and N-Fluorobis(phenylsulfonyl)amine | 603 |
20.5.11.1.1.1.1.4 Variation 4: Catalytic Asymmetric Fluorination of ß-Oxo Esters | 604 |
20.5.11.1.1.1.2 Method 2: Kinetic Enzymatic Resolution of Racemic 2-Fluoroalkanoates | 604 |
20.5.11.1.1.2 2-Chloroalkanoates | 605 |
20.5.11.1.1.2.1 Method 1: Chlorination of Ester Enolates | 605 |
20.5.11.1.1.2.1.1 Variation 1: Catalytic Asymmetric Chlorination of ß-Oxo Esters Using Chiral Titanium Lewis Acids | 606 |
20.5.11.1.1.2.1.2 Variation 2: Tandem Chlorination/Esterification of Acid Halides | 606 |
20.5.11.1.1.2.2 Method 2: Nucleophilic Displacement of a Hydroxy Group | 608 |
20.5.11.1.1.3 2-Bromoalkanoates | 608 |
20.5.11.1.1.3.1 Method 1: Electrophilic Bromination of Carbon Nucleophiles | 609 |
20.5.11.1.1.3.1.1 Variation 1: Catalytic Asymmetric Bromination with Chiral Bis(dihydrooxazole)--Copper(II) Complexes | 609 |
20.5.11.1.1.3.1.2 Variation 2: Asymmetric Tandem Bromination/Esterification of Acid Chlorides | 610 |
20.5.11.1.1.4 2-Iodoalkanoates | 610 |
20.5.11.1.1.4.1 Method 1: Formation of 2-Iodoalkanoates with N-Iodosuccinimide under Microwave Conditions | 611 |
20.5.11.1.2 2-Hydroxyalkanoates | 611 |
20.5.11.1.2.1 Method 1: Catalytic Asymmetric Hydrogenation of 2-Oxoalkanoates | 611 |
20.5.11.1.2.1.1 Variation 1: Homogeneous Catalytic Asymmetric Hydrogenation of 2-Oxoalkanoates | 612 |
20.5.11.1.2.1.2 Variation 2: Heterogeneous Catalytic Asymmetric Hydrogenation of 2-Oxoalkanoates | 613 |
20.5.11.1.2.1.3 Variation 3: Examples of Industrially Important Enantioselective Hydrogenations | 614 |
20.5.11.1.2.2 Method 2: Catalytic Asymmetric C--C Bond-Forming Reactions | 615 |
20.5.11.1.2.2.1 Variation 1: Asymmetric Alkylation of 2-Hydroxyacetates | 616 |
20.5.11.1.2.2.2 Variation 2: Enantioselective Addition of Silyl Enol Ethers to Ethyl Glyoxylate and 2-Oxoalkanoates | 617 |
20.5.11.1.2.3 Method 3: Asymmetric Oxidations | 618 |
20.5.11.1.2.3.1 Variation 1: Oxidation of Enolates with Oxaziridines | 618 |
20.5.11.1.2.3.2 Variation 2: Sharpless Catalytic Asymmetric Dihydroxylation of a,ß-Unsaturated Esters | 619 |
20.5.11.1.2.3.3 Variation 3: Synthesis of the Taxol Side Chain Using the Sharpless Catalytic Asymmetric Aminohydroxylation of Cinnamate Esters | 621 |
20.5.11.1.2.4 Method 4: Resolution | 621 |
20.5.11.1.3 2-Alkoxyalkanoates | 623 |
20.5.11.1.3.1 Method 1: O-Alkylation of a 2-Hydroxyalkanoate | 623 |
20.5.11.1.3.2 Method 2: 2-Alkoxyalkanoates by C--C Bond-Forming Reactions | 623 |
20.5.11.1.4 2,3-Epoxyalkanoates | 624 |
20.5.11.1.4.1 Method 1: Asymmetric Epoxidation of a,ß-Unsaturated Esters with Chiral Dioxiranes | 625 |
20.5.11.1.4.2 Method 2: Chiral Manganese(III)--Salen Catalyzed Enantioselective Epoxidation of cis-a,ß-Unsaturated Esters | 626 |
20.5.11.1.4.3 Method 3: Catalytic Enantioselective Epoxidation of a,ß-Unsaturated Esters Using a Lanthanide Lewis Acid Catalyst and tert-Butyl Hydroperoxide | 626 |
20.5.11.1.5 2-Sulfanylalkanoates | 627 |
20.5.11.1.5.1 Method 1: Sulfanylation of Enolates | 628 |
20.5.11.1.5.1.1 Variation 1: Sulfanylation of Ester Enolates | 628 |
20.5.11.1.5.1.2 Variation 2: Catalytic Enantioselective Sulfanylation of ß-Oxo Esters | 628 |
20.5.11.1.5.2 Method 2: Nucleophilic Displacement with Thiolates | 629 |
20.5.11.1.5.2.1 Variation 1: Direct Displacement of a Chiral Methanesulfonate | 629 |
20.5.11.1.5.2.2 Variation 2: Dynamic Resolution of 2-Bromoalkanoic Acid N-Methylpseudoephedrine Esters with Triphenylmethanethiol | 630 |
20.5.11.1.6 2-Selanylalkanoates | 631 |
20.5.11.1.6.1 Method 1: Selanylation of Enolates | 631 |
20.5.11.1.6.2 Method 2: Synthesis Using the Selenide Anion | 632 |
20.5.11.1.6.2.1 Variation 1: Opening of Epoxides | 632 |
20.5.11.1.6.2.2 Variation 2: Synthesis of Selenides by Nucleophilic Substitution | 632 |
20.5.11.1.7 2-Tellanylalkanoates | 633 |
20.5.11.1.7.1 Method 1: Synthesis Using the Telluride Anion | 633 |
20.5.11.1.7.2 Method 2: Synthesis from Iodotelluride | 634 |
20.5.12 Product Subclass 12: Alk-2-ynoic Acid Esters | 640 |
20.5.12.1 Synthesis of Product Subclass 12 | 640 |
20.5.12.1.1 Method 1: Esterification of Alk-2-ynoic Acids or Derivatives | 640 |
20.5.12.1.1.1 Variation 1: Direct Esterification of Alk-2-ynoic Acids | 640 |
20.5.12.1.1.2 Variation 2: Alkylation of Alk-2-ynoic Acids or Their Salts | 646 |
20.5.12.1.1.3 Variation 3: Alcoholysis of Alk-2-ynoic Acid Derivatives | 650 |
20.5.12.1.2 Method 2: Carboxylation of Alk-1-ynes | 652 |
20.5.12.1.2.1 Variation 1: Carboxylation of Alk-1-ynes by Deprotonation--Carboxylation | 652 |
20.5.12.1.2.2 Variation 2: Carboxylation of Lithium Acetylides Derived from 1,1-Dihaloalkenes Produced from Aldehydes by Corey--Fuchs Alkenation | 656 |
20.5.12.1.2.3 Variation 3: Carboxylation of Lithium Acetylides Derived from 1-Haloalkenes | 658 |
20.5.12.1.2.4 Variation 4: Palladium-Catalyzed Carboxylation of Alk-1-ynes with Chloroformates | 658 |
20.5.12.1.2.5 Variation 5: Palladium-Catalyzed Carboxylation of Alk-1-ynes with Carbon Monoxide and Alcohols | 659 |
20.5.12.1.2.6 Variation 6: Copper-Catalyzed Carboxylation of Alk-1-ynes with Carbon Dioxide and Alkyl Bromides | 661 |
20.5.12.1.3 Method 3: Synthesis from Alk-2-enoic Acid Esters by Bromination--Dehydrobromination | 661 |
20.5.12.1.4 Method 4: Using Wittig-Type Reactions | 662 |
20.5.12.1.4.1 Variation 1: Reaction of [(Alkoxycarbonyl)methylene]triphenylphospho-ranes with Acyl Chlorides, Anhydrides, or Carboxylic Acids | 662 |
20.5.12.1.4.2 Variation 2: Reaction of [(Ethoxycarbonyl)iodomethyl]triphenyl-phosphonium Iodide with Aldehydes | 666 |
20.5.12.1.5 Method 5: Modifications of Propynoic Acid Esters or Derivatives | 667 |
20.5.12.1.5.1 Variation 1: Coupling of Propynoic Acid Esters | 667 |
20.5.12.1.5.2 Variation 2: Coupling of Bromopropynoic Acid Esters | 671 |
20.5.12.1.5.3 Variation 3: Addition of Metalated Propynoic Acid Esters to Electrophiles | 672 |
20.5.12.1.6 Method 6: Dehydration of ß-Oxo Esters | 676 |
20.5.12.1.7 Method 7: Deaminative Dehydration of a-Diazo-ß-hydroxy Esters Derived from Aldehydes | 676 |
20.5.13 Product Subclass 13: Arenecarboxylic Acid Esters | 682 |
20.5.13.1 Synthesis of Product Subclass 13 | 682 |
20.5.13.1.1 Method 1: Friedel--Crafts Acylation | 682 |
20.5.13.1.2 Method 2: Oxidation of Benzylic Ethers | 683 |
20.5.13.1.3 Method 3: Radical Benzyloxylation | 684 |
20.5.13.1.4 Method 4: Metalation/Carbonylation of Arenes | 685 |
20.5.13.1.4.1 Variation 1: Direct Metalation | 685 |
20.5.13.1.4.2 Variation 2: Reductive Metalation of Haloarenes | 686 |
20.5.13.1.4.3 Variation 3: Lithium--Halogen Exchange with Haloarenes | 687 |
20.5.13.1.4.4 Variation 4: Metalation of Tricarbonylchromium--.6-Arene Complexes | 688 |
20.5.13.1.5 Method 5: Palladium-Mediated C--H Activation and Carbonylation | 689 |
20.5.13.1.6 Method 6: Palladium-Catalyzed Carbonylation of Main-Group Arylmetal Species | 690 |
20.5.13.1.6.1 Variation 1: Stille Coupling of Alkyl Chloroformates with Arylstannanes | 690 |
20.5.13.1.6.2 Variation 2: Carbonylation of Arylboranes with Carbon Monoxide | 691 |
20.5.13.1.7 Method 7: Transition-Metal-Catalyzed Carbonylation of Haloarenes | 691 |
20.5.13.1.8 Method 8: Construction of the Aromatic Ring by Anionic Methods | 692 |
20.5.13.1.8.1 Variation 1: Anionic [3 + 3] Aromatic Ring Formation with Chan's Diene | 692 |
20.5.13.1.8.2 Variation 2: Anionic [4 + 2] Aromatic Ring Formation by Phthalide Annulation | 693 |
20.5.13.1.8.3 Variation 3: Anionic [5 + 1] Aromatic Ring Formation by Addition to Pyrylium Salts | 694 |
20.5.13.1.9 Method 9: Construction of the Aromatic Ring by Radical Cyclizations of ß-Oxo Esters | 695 |
20.5.13.1.10 Method 10: Construction of the Aromatic Ring by Cycloadditions | 695 |
20.5.13.1.10.1 Variation 1: [4 + 2] Diels--Alder Cycloadditions and Aromatization | 695 |
20.5.13.1.10.2 Variation 2: Transition-Metal-Catalyzed [2 + 2 + 2] Cyclotrimerization of Alkynes | 697 |
20.5.13.1.11 Method 11: Construction of the Aromatic Ring by Electrocyclization and Elimination | 697 |
20.5.13.1.12 Method 12: Oxidative Rearrangement of 2-(Hydroxyaryl) Acylhydrazones | 698 |
20.5.13.1.13 Method 13: Lithiation and Alkylation of Benzoate Esters | 698 |
20.5.14 Product Subclass 14: Alk-2-enoic Acid Esters | 702 |
20.5.14.1 Synthesis of Product Subclass 14 | 702 |
20.5.14.1.1 Method 1: Alkoxycarbonylation of Alkenyl Organometallics | 702 |
20.5.14.1.1.1 Variation 1: Metalation/Alkoxycarbonylation of Alkenyl Ethers, Sulfides, and Enecarbamates | 702 |
20.5.14.1.1.2 Variation 2: Reductive Metalation/Alkoxycarbonylation of Haloalkenes | 703 |
20.5.14.1.1.3 Variation 3: Reductive Alkoxycarbonylation of Alkynes | 704 |
20.5.14.1.1.4 Variation 4: Zirconium-Catalyzed Carboalumination/Alkoxycarbonylation of Alkynes | 705 |
20.5.14.1.1.5 Variation 5: Palladium-Catalyzed Carbonylation/Alkoxylation of Alkenyl Electrophiles | 705 |
20.5.14.1.2 Method 2: Elimination Reactions | 706 |
20.5.14.1.2.1 Variation 1: Oxidative Elimination of Hydrogen from Alkanoic Acid Esters | 706 |
20.5.14.1.2.2 Variation 2: Palladium-Mediated Oxidation of Silyl Enol Ethers | 707 |
20.5.14.1.2.3 Variation 3: Elimination from ß-Heteroatom-Substituted Alkanoic Acid Esters | 708 |
20.5.14.1.2.4 Variation 4: Elimination from a-Heteroatom-Substituted Alkanoic Acid Esters | 709 |
20.5.14.1.2.5 Variation 5: Pericyclic syn-Elimination from a-Acetoxy, a-Sulfinyl, and a-Seleninyl Alkanoic Acid Esters | 710 |
20.5.14.1.2.6 Variation 6: Reductive Elimination of Vicinal Heteroatom Substituents | 711 |
20.5.14.1.2.7 Variation 7: Conversion of a-Oxo Esters into 2-Alkoxy- and 2-Aminoalk-2-enoic Acid Esters | 712 |
20.5.14.1.2.8 Variation 8: Conversion of ß-Oxo Esters into 3-Alkoxy- and 3-Aminoalk-2-enoic Acid Esters | 713 |
20.5.14.1.3 Method 3: Aldol-Type Condensations | 714 |
20.5.14.1.3.1 Variation 1: Knoevenagel and Doebner-Modified Knoevenagel Condensations | 714 |
20.5.14.1.3.2 Variation 2: Stobbe Condensation | 716 |
20.5.14.1.3.3 Variation 3: Carbonyl Homologation by Siloxyalkynes and Alkoxyalkynes | 716 |
20.5.14.1.4 Method 4: Wittig and Related Alkenylations | 717 |
20.5.14.1.4.1 Variation 1: Wittig Reaction | 718 |
20.5.14.1.4.2 Variation 2: Horner--Wittig Reaction | 719 |
20.5.14.1.4.3 Variation 3: Horner--Wadsworth--Emmons Reaction | 719 |
20.5.14.1.4.4 Variation 4: The Peterson Alkenation | 721 |
20.5.14.1.4.5 Variation 5: Alkenation of a-Oxo Esters | 722 |
20.5.14.1.5 Method 5: Eschenmoser Sulfide Contraction | 723 |
20.5.14.1.6 Method 6: Semihydrogenation of Alk-2-ynoic Acid Esters | 723 |
20.5.14.1.7 Method 7: Phosphine-Catalyzed Internal Redox Isomerization of Alk-2-ynoic Acid Esters to Dienoic Acid Esters | 725 |
20.5.14.1.8 Method 8: Conjugate Addition to Alk-2-ynoic Acid Esters | 726 |
20.5.14.1.9 Method 9: Cycloadditions of Alk-2-ynoic Acid Esters | 727 |
20.5.14.1.10 Method 10: a-Alkylation of Preformed Alk-2-enoic Acid Esters | 729 |
20.5.14.1.11 Method 11: Conjugate Addition--Elimination of 3-Heterosubstituted Alk-2-enoic Acid Esters | 730 |
20.5.14.1.12 Method 12: Transition-Metal-Catalyzed Cross Couplings of Alk-2-enoic Acid Esters | 731 |
20.5.14.1.13 Method 13: Heck Reaction | 733 |
20.5.14.1.14 Method 14: Alkene Metathesis | 734 |
20.5.15 Product Subclass 15: 3-Oxo- and 3,3-Diheteroatom-Substituted Alkanoic Acid Esters | 738 |
20.5.15.1 Synthesis of Product Subclass 15 | 738 |
20.5.15.1.1 3-Oxoalkanoic Acid Esters | 738 |
20.5.15.1.1.1 Method 1: Oxidation of 3-Hydroxyalkanoic Acid Esters | 738 |
20.5.15.1.1.2 Method 2: Addition of Methyl Ketones to Carbonyl Compounds | 739 |
20.5.15.1.1.2.1 Variation 1: Using Carbonates | 739 |
20.5.15.1.1.2.2 Variation 2: Using Cyanoformates | 739 |
20.5.15.1.1.2.3 Variation 3: Using Chloroformates | 740 |
20.5.15.1.1.3 Method 3: Addition of 2,2-Dimethyl-1,3-dioxane-4,6-dione to Acylating Agents | 741 |
20.5.15.1.1.3.1 Variation 1: Using Acid Chlorides | 741 |
20.5.15.1.1.3.2 Variation 2: Using Activated Carboxylic Acids | 742 |
20.5.15.1.1.3.3 Variation 3: Using Imidates | 743 |
20.5.15.1.1.4 Method 4: Addition of Nitroalkanes to Ethyl Glyoxalate | 743 |
20.5.15.1.1.5 Method 5: Addition of the Enolates of Acetates to Carbonyl Compounds | 744 |
20.5.15.1.1.5.1 Variation 1: Using Acid Chlorides | 744 |
20.5.15.1.1.5.2 Variation 2: Using Mixed Anhydrides | 745 |
20.5.15.1.1.5.3 Variation 3: Using 1-Alkanoylimidazoles | 746 |
20.5.15.1.1.5.4 Variation 4: Using N-Methoxy-N-methylamides | 746 |
20.5.15.1.1.5.5 Variation 5: Using a Lithium (Trimethylsilyl)acetate and a 1-Acylimidazole | 747 |
20.5.15.1.1.6 Method 6: Addition of Acetates to Acid Chlorides (via a Titanium Enolate) | 748 |
20.5.15.1.1.7 Method 7: Addition of Acetates to Carbonyl Compounds (via a Formal Zinc Enolate) | 748 |
20.5.15.1.1.7.1 Variation 1: Using a Reformatsky Reagent and an Acid Chloride | 748 |
20.5.15.1.1.7.2 Variation 2: Using a Reformatsky Reagent and a Nitrile | 749 |
20.5.15.1.1.8 Method 8: Claisen Condensation of Acetates | 750 |
20.5.15.1.1.9 Method 9: Rearrangement of (Alkanoylsulfanyl)acetates | 750 |
20.5.15.1.1.10 Method 10: Addition of Ethyl Diazoacetate to Aldehydes | 750 |
20.5.15.1.1.11 Method 11: Reduction of Ethyl 3-Oxo-2-(triphenylphosphoranylidene)alkanoates | 751 |
20.5.15.1.1.12 Method 12: Elimination of a Heterocylic Substituent from a 3-Hetaryl-3-hydroxyalkanoate | 752 |
20.5.15.1.1.12.1 Variation 1: Elimination of Pyrrole from 3-Hydroxy-3-(1H-pyrrol-1-yl)alkanoates | 752 |
20.5.15.1.1.12.2 Variation 2: Deprotection of tert-Butyl 3-Hydroxy-3-(1-methyl-1H-imidazol-2-yl)nonanoate | 752 |
20.5.15.1.1.13 Method 13: Pyrolysis of 3-Hydroxy-2-(phenylsulfinyl)alkanoic Acid Esters | 753 |
20.5.15.1.1.14 Method 14: Acylation of 3-Oxoalkanoic Acid Esters | 753 |
20.5.15.1.1.14.1 Variation 1: Acylation of Methyl Acetoacetate with Acid Chlorides | 753 |
20.5.15.1.1.14.2 Variation 2: Acylation of 3-Oxoalkanoic Acid Esters with Nitriles | 754 |
20.5.15.1.1.15 Method 15: Acylation of Malonates | 755 |
20.5.15.1.1.15.1 Variation 1: Acylation of Dialkyl Malonates with Acid Chlorides | 755 |
20.5.15.1.1.15.2 Variation 2: Acylation of Magnesium Methyl Malonate with 1-Acylimidazoles | 756 |
20.5.15.1.1.15.3 Variation 3: Acylation of Ethyl Hydrogen Malonate | 756 |
20.5.15.1.1.15.4 Variation 4: Acylation of Methyl Tetrahydro-2H-pyran-2-yl Malonate | 757 |
20.5.15.1.1.16 Method 16: Oxidation of Methyl Alk-2-ynoates | 757 |
20.5.15.1.1.17 Method 17: Oxidation of Alk-2-enoates | 758 |
20.5.15.1.1.17.1 Variation 1: Wacker Oxidation | 758 |
20.5.15.1.1.17.2 Variation 2: Epoxidation and Rearrangement of Alk-2-enoic Esters | 759 |
20.5.15.1.1.18 Method 18: Acetoacetylation of Alcohols Using Diketene | 759 |
20.5.15.1.1.19 Method 19: Addition of Diketene to Aldehydes or Acetals | 760 |
20.5.15.1.1.19.1 Variation 1: From Aldehydes | 760 |
20.5.15.1.1.19.2 Variation 2: From Acetals | 761 |
20.5.15.1.1.20 Method 20: Transesterification of 1,3-Dioxin-4-ones | 762 |
20.5.15.1.1.21 Method 21: Alkylation of 3-Oxoalkanoic Acid Esters | 764 |
20.5.15.1.2 3,3-Difluoroalkanoic Acid Esters | 765 |
20.5.15.1.2.1 Method 1: Fluorination of Ethyl 3-Oxoalkanoates | 765 |
20.5.15.1.2.2 Method 2: Reaction of Fluorinated Alkenes and Trimethyl Orthoacetate | 765 |
20.5.15.1.2.3 Method 3: Transesterification of 3,3-Difluoroalkanoic Acid Esters | 766 |
20.5.15.1.3 3,3-Dioxyalkanoic Acid Esters | 766 |
20.5.15.1.3.1 Method 1: Addition of a Silyl Ketene Acetal to 2-Ethoxy-2-methyl-1,3-dioxolane | 766 |
20.5.15.1.3.2 Method 2: Addition of a Silyl Ketene Acetal to a 1,3-Dioxolan-2-ylium Cation | 767 |
20.5.15.1.3.3 Method 3: Addition of Pyrocatechol to Alkyl Penta-2,3-dienoates | 767 |
20.5.15.1.4 3-Oxy-3-sulfanylalkanoic Acid Esters | 768 |
20.5.15.1.4.1 Method 1: Addition of 2-Sulfanylphenol to Alkyl Penta-2,3-dienoates | 768 |
20.5.15.1.5 3-Amino-3-oxyalkanoic Acid Esters | 768 |
20.5.15.1.5.1 Method 1: Addition of the Lithium Enolate of an Ester to 1-Alkanoyl-1H-pyrroles | 768 |
20.5.15.1.6 3,3-Disulfanylalkanoic Acid Esters | 769 |
20.5.15.1.6.1 Method 1: Addition of 4-Methylbenzene-1,2-dithiol to Methyl Penta-2,3-dienoate | 769 |
20.5.15.1.7 3-Amino-3-sulfanylalkanoic Acid Esters | 769 |
20.5.15.1.7.1 Method 1: Addition of 2-Aminoethanethiol to an Alk-2-ynoic Acid Ester | 769 |
20.5.16 Product Subclass 16: 3-Heteroatom-Substituted Alkanoic Acid Esters | 772 |
20.5.16.1 Synthesis of Product Subclass 16 | 772 |
20.5.16.1.1 Haloalkanoic Acid Esters | 772 |
20.5.16.1.1.1 Method 1: C==C Addition Reactions | 772 |
20.5.16.1.1.2 Method 2: Nucleophilic Substitutions | 773 |
20.5.16.1.1.3 Method 3: Cycloaddition Reactions | 774 |
20.5.16.1.1.4 Method 4: Ring Opening | 776 |
20.5.16.1.2 Hydroxy- and Sulfanylalkanoic Acid Esters and Derivatives | 777 |
20.5.16.1.2.1 Method 1: Addition to a,ß-Unsaturated Esters | 777 |
20.5.16.1.2.1.1 Variation 1: Michael Addition | 777 |
20.5.16.1.2.1.2 Variation 2: Oxidative Addition | 778 |
20.5.16.1.2.2 Method 2: Nucleophilic Substitutions | 780 |
20.5.16.1.2.3 Method 3: Cycloaddition Reactions | 783 |
20.5.16.1.2.3.1 Variation 1: Cyclopropanation of Functionalized Alkenes | 783 |
20.5.16.1.2.3.2 Variation 2: [2 + 2] Cycloaddition | 784 |
20.5.16.1.2.3.3 Variation 3: Diels--Alder Reaction | 786 |
20.5.16.1.2.4 Method 4: Ring Opening of Cyclic Precursors | 788 |
20.5.16.1.2.4.1 Variation 1: Ring Opening of Lactones | 788 |
20.5.16.1.2.4.2 Variation 2: Ring Opening of Epoxides | 789 |
20.5.16.1.2.5 Method 5: Reduction of ß-Dicarbonyl Compounds | 790 |
20.5.16.1.2.5.1 Variation 1: Selective Reductions of ß-Oxo Esters | 790 |
20.5.16.1.2.5.2 Variation 2: Monoreduction of Malonates | 792 |
20.5.16.1.2.6 Method 6: Oxidation Reactions | 794 |
20.5.16.1.2.6.1 Variation 1: Oxidation of a Preexisting Alcohol or Aldehyde Function | 794 |
20.5.16.1.2.6.2 Variation 2: “Ex-novo” Oxidative Insertion of the Ester Function | 796 |
20.5.16.1.2.6.3 Variation 3: Oxidative Insertion of the Hydroxy Function | 797 |
20.5.16.1.2.7 Method 7: Carboxylation Reactions | 798 |
20.5.16.1.2.8 Methods 8: Miscellaneous Reactions | 799 |
20.5.16.1.3 Amino- and Phosphorylalkanoic Esters and Derivatives | 799 |
20.5.16.1.3.1 Method 1: Addition to a,ß-Unsaturated Esters | 799 |
20.5.16.1.3.1.1 Variation 1: Michael Addition | 799 |
20.5.16.1.3.1.2 Variation 2: Oxidative Addition | 805 |
20.5.16.1.3.2 Method 2: Nucleophilic Substitutions | 807 |
20.5.16.1.3.3 Method 3: Cycloaddition Reactions | 809 |
20.5.16.1.3.3.1 Variation 1: Cyclopropanation of Functionalized Alkenes | 809 |
20.5.16.1.3.3.2 Variation 2: [2 + 2] Cycloaddition | 810 |
20.5.16.1.3.4 Method 4: Ring Opening of Cyclic Precursors | 812 |
20.5.16.1.3.4.1 Variation 1: Ring Opening of Lactams | 812 |
20.5.16.1.3.4.2 Variation 2: Ring Opening of Epoxides | 813 |
20.5.16.1.3.4.3 Variation 3: Ring Opening of Isoxazolidines | 814 |
20.6 Product Class 6: Lactones | 818 |
20.6.1 Synthesis of Product Class 6 | 821 |
20.6.1.1 Method 1: Lactonization | 821 |
20.6.1.1.1 Variation 1: Lactonization To Give Five-Membered Lactones | 821 |
20.6.1.2 Method 2: Asymmetric Dihydroxylation Followed by Lactonization | 823 |
20.6.1.2.1 Variation 1: Butyrolactones from 1,4-Unsaturated Esters | 823 |
20.6.1.2.2 Variation 2: Butyrolactones from 1,3-Unsaturated Esters | 826 |
20.6.1.2.3 Variation 3: Butyrolactones from Epoxides and C2 Building Blocks | 828 |
20.6.1.2.4 Variation 4: Butyrolactones from the Addition of C3 Building Blocks to Carbonyl Compounds | 835 |
20.6.1.3 Method 3: Metalation of Aromatic Carboxylic Acid Derivatives | 841 |
20.6.1.3.1 Variation 1: Base-Induced Lactonization | 844 |
20.6.1.3.2 Variation 2: Lactonization To Give Six-Membered Lactones | 846 |
20.6.1.3.3 Variation 3: d-Lactones from the Opening of Epoxides with C3 Building Blocks | 848 |
20.6.1.3.4 Variation 4: d-Lactones from the Addition of C4 Building Blocks to Carbonyl Compounds | 850 |
20.6.1.3.5 Variation 5: Lactonization To Give Four-Membered Lactones | 852 |
20.6.1.4 Method 4: Macrolactonization and Difficult Lactonizations | 853 |
20.6.1.4.1 Variation 1: The Corey--Nicolaou Method | 853 |
20.6.1.4.2 Variation 2: The Masamune Method | 856 |
20.6.1.4.3 Variation 3: The Mukaiyama Method | 856 |
20.6.1.4.4 Variation 4: The Steliou Method | 857 |
20.6.1.4.5 Variation 5: The Yamaguchi Method | 859 |
20.6.1.4.6 Variation 6: Using Other Benzoic Acid Anhydrides | 862 |
20.6.1.4.7 Variation 7: The Keck Method | 863 |
20.6.1.4.8 Variation 8: Cyclization of 9-Hydroxydecanoic Acid | 865 |
20.6.1.4.9 Variation 9: The Trost Method | 865 |
20.6.1.4.10 Variation 10: Other Routes | 867 |
20.6.1.5 Method 5: Lactones by Cycloalkylating Reactions | 867 |
20.6.1.6 Method 6: Mitsunobu Lactonization | 872 |
20.6.1.7 Method 7: Lactonization of Unsaturated Carboxylic Acids | 878 |
20.6.1.7.1 Variation 1: Proton-Catalyzed Lactonization | 879 |
20.6.1.7.2 Variation 2: Halolactonization | 879 |
20.6.1.7.3 Variation 3: (Phenylselanyl)- and (Phenylsulfanyl)lactonization | 890 |
20.6.1.8 Method 8: Lactones by Intramolecular Epoxide Opening with Carboxy Functions | 892 |
20.6.1.9 Method 9: Spiro Lactones by Oxidative Cyclization | 893 |
20.6.1.10 Method 10: Lactones by Baeyer--Villiger Oxidation | 895 |
20.6.1.10.1 Variation 1: Baeyer--Villiger Oxidation of Cyclobutanones | 895 |
20.6.1.10.2 Variation 2: Baeyer--Villiger Oxidation of Monocyclic, Annulated, and Spirocyclic Ketones | 899 |
20.6.1.10.3 Variation 3: Baeyer--Villiger Oxidation of Bi- and Polycyclic Ketones | 906 |
20.6.1.10.4 Variation 4: Macrolactones by Baeyer--Villiger Oxidation | 910 |
20.6.1.10.5 Variation 5: Enzymatic Baeyer--Villiger Reactions | 911 |
20.6.1.10.6 Variation 6: Metal-Catalyzed Baeyer--Villiger Oxidation | 913 |
20.6.1.11 Method 11: ß-Lactones by [2 + 2]-Cycloaddition Reactions | 916 |
20.6.1.12 Method 12: Lactones from Heterocyclic Precursors | 925 |
20.6.1.12.1 Variation 1: Reduction of Cyclic Anhydrides to Lactones | 925 |
20.6.1.13 Method 13: Butenolides from Furans | 928 |
20.6.1.13.1 Variation 1: Unsaturated d-Lactones from Glycals | 931 |
20.6.1.14 Methods 14: Other Methods | 933 |
20.7 Product Class 7: Peroxy Acids and Derivatives | 950 |
20.7.1 Product Subclass 1: Peroxy Acids, Peroxy Acid Salts, and Peroxy Acid Esters | 950 |
20.7.1.1 Synthesis of Product Subclass 1 | 950 |
20.7.1.1.1 Method 1: Synthesis of Phthaloyl Peroxide | 950 |
20.7.1.2 Applications of Product Subclass 1 in Organic Synthesis | 951 |
20.7.1.2.1 Method 1: Asymmetric Allylic Oxidation of Alkenes | 951 |
20.7.1.2.2 Method 2: Diastereofacial Selective Epoxidation | 955 |
20.7.1.2.3 Method 3: Hydrolysis of Peroxy Esters in the Presence of Bis(tributyltin) Oxide | 957 |
20.7.2 Product Subclass 2: O-Acylhydroxylamines and Related Compounds | 957 |
20.7.2.1 Synthesis of Product Subclass 2 | 957 |
20.7.2.1.1 Method 1: N-Aryl-O-benzoylhydroxylamines by Reaction of N-Arylhydroxylamines with Benzoyl Chloride | 957 |
20.7.2.1.2 Method 2: N-Alkyl-O-benzoylhydroxylamines by Reduction of Oxime Benzoates | 958 |
20.7.2.1.3 Method 3: O-Aroylhydroxylamines from Aroyl Cyanides or Aroyl Chlorides | 959 |
20.7.2.1.4 Method 4: O-Acetyl-N-allyl-N-pent-4-enoylhydroxylamine from O-Acetyl-N-allylhydroxylamine | 961 |
20.7.2.1.5 Method 5: Cysteine Protease Inhibitor | 961 |
20.7.2.1.6 Method 6: Optically Active Isoxazolidin-5-ones from Nitrones | 962 |
20.7.2.1.7 Method 7: 3-Phenylcyclobutanone O-Benzoyloxime from Hydroxylamine and Benzoyl Chloride | 963 |
20.7.2.1.8 Method 8: Optically Pure Spiro-.4-sulfanes from Sulfides | 963 |
20.7.2.1.8.1 Variation 1: Stereospecific Synthesis of Optically Active (Acylamino)(acyloxy)diarylspiro-.4-sulfanes | 964 |
20.7.2.1.8.2 Variation 2: Bis(acyloxy)spiro-.4-sulfanes from Sulfoxides | 965 |
20.7.2.1.9 Method 9: Trihalomethanesulfenyl Acetates and Trifluoroacetates from Sulfenyl Chlorides | 965 |
20.7.2.1.10 Method 10: (R)-Acetyl 1,1'-Binaphthyl-2,2'-diyl Phosphite | 966 |
20.7.2.1.11 Method 11: Carboxyalkyl a-Aminoalkylphosphonic Acid Monoesters from Spirophosphoranes | 967 |
20.7.2.1.12 Method 12: A (Benzoyloxy)(benzyl)phenylphosphine--Tungsten Complex via Phospha-Wittig Reaction | 968 |
20.7.2.1.12.1 Variation 1: Synthesis of 1,2-Oxaphosphole--Pentacarbonyltungsten Complexes | 968 |
20.7.2.1.13 Method 13: Spiro-.4-selanes from Selenides | 969 |
20.7.2.1.13.1 Variation 1: Acyloxy-.4-selanes from Carboxylic Acids by Chlorination | 970 |
20.7.2.1.13.2 Variation 2: Trifluoroacetoxy-.4-selanes from Selenoxides | 970 |
20.7.2.1.14 Method 14: A Phenylselanyl Ester in Roseophilin Synthesis | 970 |
20.7.2.1.15 Method 15: Benzeneselenenyl Trifluoroacetate from Benzeneseleninic Anhydride and Diphenyl Diselenide | 971 |
20.7.2.1.16 Method 16: Spiro-.4-tellane Synthesis Using the 2-exo-Hydroxy-10-bornyl Group as a Chiral Ligand | 971 |
20.7.2.1.17 Method 17: Macrocyclic Multi-.4-tellanes by Reaction of a Telluronium Salt with Phthalate Salts | 972 |
20.7.2.2 Applications of Product Subclass 2 in Organic Synthesis | 973 |
20.7.2.2.1 Method 1: Synthesis of Adenosine Derivatives | 973 |
20.7.2.2.2 Method 2: Conversion of Cyclobutanone O-Benzoyloximes into Nitriles | 974 |
20.7.2.2.3 Method 3: Synthesis of Secondary Amines | 974 |
20.7.2.2.4 Method 4: Synthesis of N-Hydroxy Peptides | 975 |
20.7.2.2.5 Method 5: Synthesis of the N-tert-Butyl-N-(3,5-dinitrobenzoyl)nitroxyl Radical | 975 |
20.7.2.2.6 Method 6: Addition of Trihalomethanesulfenyl Acetates to Alkenes | 976 |
20.7.2.2.7 Method 7: Synthesis of Thioacetylated Lactosides | 976 |
20.7.2.2.8 Method 8: Reaction of Cyclic Phosphites with ß-Dicarbonyl Compounds | 977 |
20.7.2.2.9 Method 9: Applications of Benzeneselenenyl Trifluoroacetate | 978 |
20.7.2.2.10 Method 10: One-Pot Method for Alkene Trifunctionalization | 979 |
20.7.2.2.11 Method 11: Transformation of Allylsilanes into Allylamines via Phenyltellurinylation | 981 |
20.7.2.2.12 Method 12: Cyclofunctionalization of Alkenyl Carbamates Using Benzenetellurinic Trifluoroacetate | 982 |
20.7.2.2.13 Method 13: Diacetoxylation of Dienes by Acetoxytelluration Followed by Acetylation | 982 |
20.7.3 Product Subclass 3: Acetyl Hypohalites | 984 |
20.7.3.1 Synthesis of Product Subclass 3 | 984 |
20.7.3.1.1 Method 1: Synthesis of Acetyl Hypohalites | 984 |
20.7.3.2 Applications of Product Subclass 3 in Organic Synthesis | 985 |
20.7.3.2.1 Method 1: Iodocyclization Using Acetyl Hypoiodite | 985 |
20.7.3.2.2 Method 2: Fluorination Using Acetyl Hypofluorite | 986 |
20.7.3.2.2.1 Variation 1: Direct Fluorination of Peptides Containing Tyrosine | 986 |
20.7.3.2.2.2 Variation 2: Fluorination of 1,3-Dicarbonyl Derivatives | 986 |
20.7.3.2.2.3 Variation 3: Fluorination of Nitro Compounds | 987 |
20.7.3.2.2.4 Variation 4: Synthesis of a-Fluorocarboxylates | 988 |
20.7.3.2.2.5 Variation 5: Acetoxylation of Nitrogen Heterocycles | 988 |
20.7.4 Product Subclass 4: Peroxy Esters of Sulfur, Nitrogen, and Phosphorus | 989 |
20.7.4.1 Synthesis of Product Subclass 4 | 989 |
20.7.4.1.1 Method 1: Pentafluorosulfur Peroxy Esters from Acyl Fluorides and Pentafluoro-.6-sulfane Hydroperoxide | 989 |
20.7.4.1.2 Method 2: 1-(Benzoylperoxy)-2,2,6,6-tetramethylpiperidine by Direct Reaction of Dibenzoyl Peroxide | 990 |
20.7.4.1.3 Method 2: Trifluoroacetyl Peroxynitrate by Nitration of Trifluoroperacetic Acid | 990 |
20.7.4.2 Applications of Product Subclass 4 in Organic Synthesis | 991 |
20.7.4.2.1 Method 1: As Radical Initiators Used in the Bulk Polymerization of Styrene | 991 |
20.8 Product Class 8: Thiocarboxylic S-Acids, Selenocarboxylic Se-Acids, Tellurocarboxylic Te-Acids, and Derivatives | 994 |
20.8.1 Product Subclass 1: Thiocarboxylic S-Acids and Their Salts | 994 |
20.8.1.1 Synthesis of Product Subclass 1 | 995 |
20.8.1.1.1 Method 1: Acylation of a Sulfur Source | 995 |
20.8.1.1.2 Method 2: Direct Thiation of Carboxylic Acids | 997 |
20.8.1.1.3 Methods 3: Miscellaneous Procedures | 998 |
20.8.2 Product Subclass 2: Thioanhydrides (Diacyl Sulfides) | 1000 |
20.8.2.1 Synthesis of Product Subclass 2 | 1001 |
20.8.2.1.1 Method 1: Reaction of an Acylating Agent with a Sulfide Source | 1001 |
20.8.2.1.2 Method 2: Reaction of Thiocarboxylic Acids and an Acylating Agent | 1004 |
20.8.2.1.3 Methods 3: Miscellaneous Procedures | 1006 |
20.8.3 Product Subclass 3: Acyl Sulfones | 1007 |
20.8.3.1 Synthesis of Product Subclass 3 | 1007 |
20.8.3.1.1 Method 1: Oxidation of Thiocarboxylic Acid S-Esters | 1007 |
20.8.3.1.2 Methods 2: Miscellaneous Procedures | 1008 |
20.8.4 Product Subclass 4: Thiocarboxylic Acid S-Esters | 1008 |
20.8.4.1 Synthesis of Product Subclass 4 | 1009 |
20.8.4.1.1 Method 1: Synthesis from Thiocarboxylic Acids | 1009 |
20.8.4.1.1.1 Variation 1: Alkylation of Thiocarboxylic Acids with Alkyl Halides or Related Compounds | 1009 |
20.8.4.1.1.2 Variation 2: Addition Reactions | 1013 |
20.8.4.1.1.3 Variation 3: Arylation of Thiocarboxylic Acids | 1015 |
20.8.4.1.2 Method 2: Acylation of Thiols | 1016 |
20.8.4.1.2.1 Variation 1: Acylation by Carboxylic Acid Halides | 1016 |
20.8.4.1.2.2 Variation 2: Acylation by Acid Anhydrides | 1019 |
20.8.4.1.2.3 Variation 3: Acylation by Carboxylic Acids | 1021 |
20.8.4.1.2.4 Variation 4: Acylation by Carboxylic Acid Esters | 1024 |
20.8.4.1.3 Method 3: Carbonylation Reactions | 1027 |
20.8.4.1.4 Method 4: Synthesis by Rearrangement | 1031 |
20.8.4.1.5 Method 5: Synthesis by Modification of the Acyl Group | 1032 |
20.8.4.1.6 Method 6: Synthesis by Modification of the Sulfur Unit | 1035 |
20.8.4.1.7 Methods 7: Miscellaneous Procedures | 1036 |
20.8.5 Product Subclass 5: Acylsulfenyl Halides | 1038 |
20.8.5.1 Synthesis of Product Subclass 5 | 1038 |
20.8.5.1.1 Method 1: Direct Halogenation of Thiocarboxylic S-Acids or Their Salts | 1038 |
20.8.6 Product Subclass 6: Acylsulfenic Acids and Derivatives | 1040 |
20.8.7 Product Subclass 7: Diacyl Disulfides | 1042 |
20.8.7.1 Synthesis of Product Subclass 7 | 1042 |
20.8.7.1.1 Method 1: Oxidation of Thiocarboxylic S-Acids | 1042 |
20.8.7.1.2 Method 2: Reaction of Acid Chlorides and a Disulfide Source | 1043 |
20.8.7.1.3 Method 3: Reaction of Thiocarboxylic S-Acids and Electrophilic Acylsulfanyl Donors | 1044 |
20.8.7.1.4 Methods 4: Miscellaneous Procedures | 1045 |
20.8.8 Product Subclass 8: Acyl Disulfides (Acyl Dithioperoxides) | 1046 |
20.8.8.1 Synthesis of Product Subclass 8 | 1046 |
20.8.8.1.1 Method 1: Synthesis from Thiocarboxylic S-Acids and Electrophilic Sulfur Species | 1046 |
20.8.8.1.2 Method 2: Synthesis from Acylsulfenyl Chlorides and Sulfur Nucleophiles | 1047 |
20.8.8.1.3 Methods 3: Miscellaneous Procedures | 1048 |
20.8.9 Product Subclass 9: S-Acyl Selenothioperoxides and Tellurothioperoxides | 1049 |
20.8.9.1 Synthesis of Product Subclass 9 | 1050 |
20.8.9.1.1 Method 1: Synthesis from a Thiocarboxylic S-Acid and an Electrophilic Selenium or Tellurium Fragment | 1050 |
20.8.9.1.2 Method 2: Synthesis from Acylsulfenyl Halides and Chalcogen Nucleophiles | 1051 |
20.8.9.1.3 Methods 3: Miscellaneous Procedures | 1052 |
20.8.10 Product Subclass 10: Acyl Sulfenamides and Related Compounds | 1052 |
20.8.10.1 Synthesis of Product Subclass 10 | 1053 |
20.8.10.1.1 Method 1: Synthesis from Thiocarboxylic S-Acids and Electrophilic Amine Sources | 1053 |
20.8.11 Product Subclass 11: Selenocarboxylic Acid Se-Esters and Tellurocarboxylic Acid Te-Esters | 1055 |
20.8.11.1 Synthesis of Product Subclass 11 | 1057 |
20.8.11.1.1 Method 1: Selenocarboxylic Acid Se-Esters and Tellurocarboxylic Acid Te-Esters by Alkylation of Chalcogenocarboxylic Acids | 1057 |
20.8.11.1.2 Method 2: Synthesis from Carboxylic Acids | 1059 |
20.8.11.1.3 Method 3: Synthesis from Activated Esters | 1062 |
20.8.11.1.4 Method 4: Synthesis from Carboxylic Acid Esters | 1065 |
20.8.11.1.5 Methods 5: Miscellaneous Procedures | 1067 |
20.8.12 Product Subclass 12: Other Acylselenium and Acyltellurium Compounds | 1069 |
20.8.12.1 Synthesis of Product Subclass 12 | 1070 |
20.8.12.1.1 Method 1: Synthesis of Selenocarboxylic Se-Acids and Tellurocarboxylic Te-Acids | 1070 |
20.8.12.1.2 Method 2: Synthesis of Diacyl Selenides (Selenoanhydrides) and Diacyl Tellurides (Telluroanhydrides) | 1071 |
20.8.12.1.3 Method 3: Synthesis of Acyl Diselenides, Acyl Ditellurides, and Mixed Chalcogen Derivatives | 1071 |
20.8.12.1.4 Method 4: Synthesis of Diacyl Diselenides and Diacyl Ditellurides | 1072 |
20.8.12.1.5 Method 5: Synthesis of Acylselenenyl Halides | 1072 |
20.8.12.1.6 Method 6: Synthesis of Acylselenium(IV) and Acyltellurium(IV) Compounds | 1073 |
Keyword Index | 1088 |
Author Index | 1138 |
Abbreviations | 1198 |