1
Warum ist das Leben so kompliziert?
Bisweilen glauben wir, andere Lebewesen zu verstehen. Familienangehörige, Haustiere, BundeskanzlerInnen, Stubenfliegen, Topfblumen – sie sind alle nur Lebewesen wie du und ich, die sich ein bisschen Zufriedenheit wünschen für ihre begrenzte Lebensfrist. Wir identifizieren uns mit anderen Menschen, sogar mit nicht-menschlichen Lebewesen, und wir glauben sie zu verstehen.
Dann wieder gibt es Momente, wo wir nicht einmal die Handlungen der Angehörigen unserer eigenen Spezies begreifen können. Zum Beispiel, wenn Menschen unvollstellbar grausam, dumm, gierig, oder gleich alles auf einmal sind. Wenn die zwischenmenschliche Verständigung versagt. Wenn die Vernunft sich rar macht. Wenn Einfühlen und Mitfühlen uns plötzlich nicht mehr weiterhelfen.
Wie erklärt man Völkermord? Wie versteht man, dass Menschen verhungern, während andere im Überfluss schwelgen? Unsere mitmenschliche Solidarität und Empathie kann diese Phänomene nur beklagen, aber einleuchtende Erklärungen findet sie nicht. Warum kann das menschliche Hirn himmlische Musik oder höllische Folter ersinnen? Wir wissen es nicht.
Als Wissenschaftler, der sich überwiegend mit einfacheren Dingen beschäftigt, wundert mich dieses Versagen nicht. Lebewesen sind nun einmal extrem kompliziert. Und das menschliche Gehirn ist – zumindest solange, bis wir noch intelligentere Außerirdische entdecken – das komplizierteste System im uns bekannten Universum.
Noch unübersichtlicher wird es, wenn sieben Milliarden Gehirne auf unkontrollierte Weise miteinander wechselwirken. Es liegt in der Natur der Sache, dass einige wenige Gehirne nicht einmal näherungsweise vorhersagen können, was aus dieser potenzierten Komplexität herauskommt. Alles ist möglich, im Schlimmen wie im Guten.
Es ist eine Ironie unserer Zeit, dass die Wissenschaften, die sich mit einfacheren Dingen beschäftigen – etwa Physik, Chemie, Astronomie – im Ruf stehen, schwierig und für normale Menschen unzugänglich zu sein. Dabei ist zum Beispiel ein Stern ein überaus primitives und vorhersehbares System. AstrophysikerInnen können das Licht analysieren, das er aussendet, und dann genau vorhersagen, wie seine Zukunft verlaufen wird.
Wenn Pendel schwingen, Moleküle reagieren, Raketen ins Weltall fliegen – die verrufenen Gleichungen der harten Wissenschaften können genau beschreiben, was gerade passiert, und in vielen Fällen, außer wenn Unsicherheiten aus der Quantenwelt oder der Chaostheorie, oder menschliche Faktoren dazwischenfunken, können sie sogar die Zukunft vorhersagen. Bei lebenden Systemen ist das nicht so einfach.
Chemie, Physik, Astronomie erscheinen nur deshalb schwierig, weil wir ihre Objekte, die Atome, Moleküle Sterne und Quasare nicht anfassen oder mit unserer Lebenserfahrung begreifen können. Biologie erscheint nur deshalb einfach, weil wir Lebewesen aus eigener Anschauung kennen und – allen gegenteiligen Erfahrungen zum Trotz – zu verstehen glauben. Doch in Wirklichkeit ist lebende Materie unvorstellbar kompliziert, und höhere Organisationsstufen des Lebens umso mehr.
Bis ins 19. Jahrhundert hat man sich damit beholfen, die Biologie als rein beschreibende Wissenschaft zu betreiben, ohne weiter nach Gründen und Mechanismen zu fragen. Damit wären wir natürlich heutzutage nicht mehr zufrieden. Mit der Sammlung, Katalogisierung und Benennung des Lebendigen haben die alten Naturforscher immerhin eine Grundlage geschaffen, auf der die Wissenschaft später aufbauen konnte.
Auseinandernehmen und Zusammenbauen
Im 20. Jahrhundert setzte die Biologie ein Heilmittel gegen die Kompliziertheit der Lebewesen ein: den Reduktionismus. Insbesondere in der zweiten Hälfte des 20. Jahrhunderts haben Biologen gnadenlos und mit überwältigendem Erfolg alle komplizierten Dinge auf einfachere Bestandteile reduziert. Sie zerlegten Organismen in Organe, Organe in Zellen, Zellen in Organellen, Organellen in Moleküle. Und damit kamen sie dann in den Bereich der gesicherten Erkenntnisse, denn Moleküle kann man mit physikalischen und chemischen Methoden genauestens analysieren.
Diese Vorgehensweise hat uns vermutlich die größte Erkenntnismasse in der Kulturgeschichte der Menschheit verschafft, aber sie lässt am Ende immer einige Fragen unbeantwortet. Die Fragen nach dem Großen und Ganzen, nach der höheren Ebene, die nach dem Bewusstsein sowieso. Aber der Reduktionismus tut sich auch schwer mit komplexen Systemen aus vielen unabhängig agierenden Komponenten, die biologisch interessante Phänomene hervorbringen. Manche sprechen von »emergenten« Eigenschaften, die sich aus den komplexen Wechselwirkungen der Komponenten entwickeln, sich aber einer arithmetischen Vorhersage aus dem Verhalten der Einzelteile entziehen. Kurz gefasst: Das Ganze kann mehr als die Summe seiner Teile.
Das gilt für hinreichend komplexe Lebewesen, für Gemeinschaften von Lebewesen, und für Ökosysteme. All diese komplizierten Netzwerke von Wechselwirkungen zwischen Einzelteilen folgen zwar den physikalischen Regeln, die für die Einzelteile gelten, aber ihre Entwicklung ist deshalb noch lange nicht voraussehbar.
Ungefähr um die Jahrtausendwende ließ sich in der Biologie eine Trendwende erkennen. Stand das 20. Jahrhundert im Zeichen der Zerlegung von Organismen in ihre kleinsten Einzelteile, so interessierten sich zu Anfang des neuen Jahrhunderts plötzlich immer mehr Fachkundige für das Zusammensetzen der Einzelteile, die im vergangenen Jahrhundert so sorgfältig präpariert, sortiert, und charakterisiert worden waren.
Die »neue Welle« der Biologie wollte den Reduktionismus keinesfalls verwerfen oder schlechtreden. Es ging vielmehr darum, auf seinen Errungenschaften aufzubauen und die analytische Verständnisweise durch eine synthetische zu ergänzen. Wer ein Auto in seine Bestandteile zerlegt, gewinnt zweifellos Einsicht in die verborgenen Mechanismen seiner Funktion. Aber nur wer die Teile nachher auch wieder zu einem fahrtüchtigen Vehikel zusammensetzen kann, hat wirklich verstanden, wie es funktioniert.
Das Zusammenbauen erfolgte zunächst einmal in Computermodellen. Die exponentiell ansteigende Leistungsfähigkeit der Computer ermöglichte es bereits um die Jahrtausendwende, einfache Zellen wie etwa rote Blutkörperchen in silico zu simulieren. Die neue Branche der Biologie nennt sich Systembiologie, da sie jedes biologische System – sei es eine Zelle, ein Organ, ein Organismus oder ein Ökosystem – holistisch in seiner Gesamtheit zu begreifen trachtet, nicht reduktionistisch als einen Haufen Einzelteile.
Denis Noble, der selbst jahrzehntelang dem Reduktionismus frönte, verfasste mit seinem 2006 erschienenen Buch The music of life: Biology beyond the genome eine Art Manifest der Systembiologie. Wie der Titel bereits andeutet ist seine Leitmetapher die eines Orchesters. Es kommt nicht nur darauf an, was in der einzelnen Stimme geschrieben steht, sondern auch darauf, wie die vielen verschiedenen Stimmen zusammen erklingen.
Aber auch im Labor ging es ab der Jahrtausendwende konstruktiver zu. Im Rahmen einer weiteren neuen Teildisziplin, der synthetischen Biologie, wendeten Wissenschaftler das im 20. Jahrhundert Erlernte auf die Erzeugung von Neuem an.
Es herrschte zunächst wenig Einigkeit darüber, was synthetische Biologie eigentlich ist, da verschiedene Arbeitsgruppen ihre sehr unterschiedlichen Ansätze unter dieser Flagge scheinbar in verschiedene Richtungen steuerten (siehe [1, S. 217]). Erst als sich konkrete Erfolge abzeichneten, wurde es etwas deutlicher, wohin die Reise möglicherweise gehen könnte.
Eine für die Weltgesundheit ebenso wie für die Wissenschaft wichtige Errungenschaft war die 2006 berichtete Umprogrammierung von Hefen zur Herstellung eines entscheidenden Zwischenprodukts für die Synthese des Malariamittels Artemisinin, dessen Gewinnung aus natürlichen Quellen zu kostspielig und unzuverlässig ist, um eine dauerhafte medizinische Versorgung gewährleisten zu können.
Mit enormem Aufwand schleusten Forscher in Kalifornien einen kompletten neuen Stoffwechselweg in die Hefen ein, der – ausgehend von einer neuen Abzweigung im normalen Hefe-Stoffwechsel – in vier Synthesestufen das gewünschte Produkt Artemisininsäure liefert. Diese kann dann mit einfachen chemischen Verfahren in das Malariamedikament umgewandelt werden.
Inzwischen hat die industrielle Anwendung dieses Verfahrens bereits begonnen. Im April 2013 eröffnete die französische Pharma-Firma Sanofi in Garessio in Italien die erste Produktionsstätte für Artemisinin, die mit demselben Prinzip arbeitet, obwohl Sanofi für die letzten Schritte der Synthese eigene Verfahren entwickelte. Sanofi will bereits 2014 eine Jahresproduktion von 50 bis 60 Tonnen erreichen, was etwa ein Drittel des weltweiten Bedarfs abdeckt.
Andere Forscher demonstrierten die Möglichkeiten der synthetischen Biologie mit Modellprojekten, indem sie zum Beispiel Darmbakterien mit eigenen Blinklichtern ausstatteten. Mit solchen Spielereien gibt sich der Genom-Pionier Craig Venter natürlich nicht ab, der die Schrotschussmethode zur...