Zum Geleit
Dreizehn Jahre nach der 1. Auflage erscheint Kurrers Geschichte der Baustatik in wesentlich erweiterter Form, nunmehr mit dem Untertitel Auf der Suche nach dem Gleichgewicht. Der Zusatz weist natürlich auf die Bedeutung des wichtigsten aller mechanischen Grundsätze hin: Ohne Gleichgewicht keine tragende Struktur. Er drückt aber auch die ständige Suche nach der Balance zwischen der Baustatik als Wissenschaftsdisziplin und ihrer zentralen Aufgabe in der praktischen Anwendung aus, ganz im Sinne von Leibniz’ Theoria cum Praxi. Dieses Wechselspiel hat beide Seiten zu allen Zeiten ganz wesentlich befruchtet, was sich als roter Faden durchgängig im gesamten Buchwerk zeigt.
Neue Inhalte der 2. Auflage sind: Erddrucktheorie, Traglastverfahren, historische Lehrbuchanalyse, Stahlbrückenbau, Leichtbau, Platten- und Schalentheorie, Computerstatik, Computergestützte Graphostatik und Historische Technikwissenschaft.
Gleich zu Anfang lesen wir, dass die erste Tagung über die Geschichte der Baustatik 2005 in Madrid stattgefunden hat. Das Thema, in Teilbereichen vielfach behandelt, wartet geradezu auf eine umfassende Darstellung. Das vorliegende Werk ist allerdings kein Geschichtsbuch, in der die Beiträge unserer Vorfahren zum Thema in chronologischer Folge aufgelistet und systematisch beschrieben werden. Es ist Kurrers Geschichte der Baustatik mit seinen Interpretationen und Einordnungen; glücklicherweise, denn so ist es eine spannende Zeitreise geworden, stark subjektiv geprägt, eher thematisch und nur grob chronologisch gegliedert, mit einer Vorliebe zum Wissenschaftstheoretischen, eben die Beschreibung der Evolution einer wichtigen technikwissenschaftlichen Grundlagendisziplin mit ihren vielen Facetten in Lehre, Forschung und vor allem Praxis.
Und was ist überhaupt Baustatik? Der Begriff in dieser Kurzform wird wohl erst am Beginn des 20. Jahrhunderts entstanden sein. Gerstners erstes Buch aus dem Jahr 1789 spricht noch von der statischen Baukunst; Emil Winkler verwendet um 1880 den Begriff Statik der Baukonstruktionen. Darin schließt Winkler auch die Erddrucktheorie ein, deren Entwicklungsgeschichte Kurrer von 1700 bis heute erstmals im umfangreichen Kapitel 5 gültig zusammenfasst. Die Geschichte der Baustatik ist zunächst einmal eine Geschichte der Mechanik und der Mathematik, die sich ja früher als ausgesprochen angewandte Wissenschaften verstanden. Kurrer nennt diesen Zeitraum von 1575 bis 1825 die Vorbereitungsperiode, die für den Bauwerksentwurf noch stark von der Empirie beherrscht wird. Dennoch müssen wir feststellen, dass hier die Grundlagen vieler Tragwerkstheorien gelegt werden. Gemeinhin wird das statische Gutachten der drei Mathematiker zur Sanierung der Peterskuppel (1742/43) als erste statische Berechnung im heutigen Sinne betrachtet, bei der eine Bauaufgabe durch Anwendung wissenschaftlicher Methoden angegangen wird, bezeichnenderweise begleitet durch den wohl ewig anhaltenden Streit zwischen Theorie und Praxis (s. Abschnitt 13.2.5). Heute belegen wir den Jahrhunderte alten Vorgang der gedanklichen Abstraktion natürlicher und technischer Prozesse in fast allen wissenschaftlichen Disziplinen mit den Vokabeln Modellierung und Simulation, so als ob er erst mit dem Aufkommen des Computers und der Informationsverarbeitung eingeführt worden sei, dabei war er schon lange Triebkraft menschlichen Denkens und Handelns. Die Abbildung der tragenden Eigenschaften von Baukonstruktionen in ein Gedankenmodell ist ein typischer Fall. Als klassisches Beispiele seien die Entwicklung der Gewölbe-, Bogen- und Kuppeltheorien (s. Kapitel 4) sowie die kontinuumsmechanischen Erddruckmodelle eines Rankine und Boussinesq (s. Abschn. 5.4 und 5.5) genannt. Es hat sich eingebürgert, diesen rechnerorientierten Teilbereich in den einzelnen Wissenschaften mit dem Zusatz Computational zu bezeichnen, hier eben Computational Mechanics.
Das Jahr 1825 als der Beginn einer Disziplinbildungsperiode der Baustatik (s. Kapitel 7) ist sicher treffend gewählt. Baustatik reduziert sich nicht auf das Lösen einer Gleichgewichtsaufgabe und einen Rechenprozess. Navier, dessen Bedeutung als »Mechaniker« wir heute noch mit seinem Namenszusatz bei zahlreichen Theorien anerkennen (Naviersche Spannungsverteilung, Navier-Lamé- und Navier-Stokes-Gleichungen u. a. m.), war ein ausgesprochener Praktiker. Als Professor für Angewandte Mechanik an der École des Ponts et Chaussées hat er die Gebiete der Angewandten Mechanik und Festigkeitslehre zusammengeführt, um sie auf praktische Aufgaben des Bauwesens anzuwenden. So beschreibt er in seiner Mechanik der Baukunst 1826 die Arbeit der Ingenieure: nachdem das Project eines Werkes entworfen und aufgezeichnet ist, untersuchen sie, ob sie allen Bedingungen genügt haben, und verbessern ihren Entwurf so lange, bis dies geschehen ist. Unter diesen Bedingungen ist die Oekonomie eine der wesentlichsten; die Solidität und die Dauerhaftigkeit sind nicht weniger wichtig (…) (s. Abschnitt 2.1.2.1). Mit Navier hob die Durchsetzung der Baustatik als eigenständige wissenschaftliche Disziplin an. Wichtige Tragwerkstheorien und Berechnungsmethoden werden in der Folgezeit entwickelt, verbunden mit Namen wie Clapeyron, Lamé, Saint-Venant, Rankine, Maxwell, Cremona, Castigliano, Mohr, Winkler, um nur einige zu nennen. Die graphische Statik von Culmann und ihre Weiterentwicklung zur Graphostatik sind Meilensteine in der Geschichte der Baustatik.
Bereits an dieser Stelle sei darauf hingewiesen, dass die Entwicklung nicht immer ohne Kontroversen abging, sei es aus inhaltlichen Gründen, aus einem disziplinären Wettbewerb oder einem Prioritätenstreit. Das spannende Thema wird an 13 Beispielen in Kapitel 13 vertieft.
Die Methodenentwicklung der Baustatik bekam in den folgenden Jahren eine starke Ausrichtung auf spezielle Tragwerksysteme und damit auch in natürlicher Weise auf die eingesetzten Baustoffe wie Eisen (Stahl) und später den Eisenbeton (Stahlbeton) (s. Kapitel 8, 9 und 10). Eigenständige werkstoffspezifische Systeme und Methoden wurden entwickelt; vereinfacht ausgedrückt: Der Stahlbau konzentrierte sich aufgrund seiner Modularität und der Fertigungsverfahren zuerst auf Stabtragwerke, erst seit den 1950er-Jahren kamen die Flächentragwerke dazu. Dagegen entfaltete der Betonbau seine ihm eigene Sprache in Form von flächenhaften Tragwerken wie Platten, Scheiben und Schalen. So erfahren in der 2. Auflage des vorliegenden Werkes die Kapitel 8 und 10 eine starke Erweiterung durch Flächentragwerke. Die in Kapitel 9 behandelten räumlichen Fachwerke stellen gewissermaßen ein Scharnier dar.
Die werkstofforientierte Trennung spiegelte sich auch bei der Lehre der Baustatik in getrennten Lehrveranstaltungen wider. Erst sehr viel später wurden die Teile zu einer einheitlichen Baustatik zusammengeführt, dann allerdings häufig »neutralisiert«, d. h. nicht mehr auf die besonderen Eigenschaften der Werkstoffe bezogen; eine Entwicklung, die aus heutiger Sicht kritisch zu beurteilen ist. Natürlich sind die Methoden der Baustatik im Grundsatz werkstoffübergreifend: Sie müssen aber im konkreten Fall die besonderen Eigenschaften der Werkstoffe mit einbeziehen.
Nach Kurrer geht die Disziplinbildungsperiode mit ihren großen Erfolgen durch die Graphische Statik und die Systematisierung der Berechnungsmethoden der Stabstatik in Gestalt des Kraftgrößenverfahrens um 1900 in eine Konsolidierungsperiode (bis 1950) über; diese ist geprägt durch Verfeinerung und Erweiterung, wie beispielsweise die Zuwendung zu den Flächentragwerken und die Berücksichtigung nichtlinearer Effekte. Erst dann beginnt die »Moderne« der Baustatik, hier Integrationsperiode genannt. Sie ist gekennzeichnet durch den Einsatz des Computers und leistungsfähiger numerischer Methoden: Die Baustatik wird in den Tragwerksplanungsprozess Entwurf – Analyse – Bemessung – Konstruktion – Ausführung integriert. Ist damit die Evolution abgeschlossen? Verliert die Baustatik etwa mit dieser Entwicklung als eigenständige Technikwissenschaft ihr Profil und ihre Berechtigung? Die Tendenzen der letzten Jahre zeigen allerdings das Gegenteil.
Die Geschichte von gestern und heute ist auch die Geschichte von morgen. Die Baustatik hat durch die Daten- und Informationsverarbeitung eine rasante Entwicklung durchgemacht, verbunden mit zahlreichen Paradigmenwechseln. Nicht mehr der Rechenprozess und Verfahrensfragen, sondern Grundlagen, Modellbildung, Realitätsnähe, Qualitätssicherung u. a. m. stehen im Mittelpunkt. Zum Aufgabengebiet gehören neben der Statik die Dynamik, Flächentragwerke spielen eine mindest ebenso große Rolle wie die Stabtragwerke, die Berücksichtigung realen Werkstoffverhaltens ist heute zwingend. Die Baustatik war in ihrer Lebensgeschichte immer ein Aushängeschild des konstruktiven Ingenieurbaus; sie war nie die Disziplin von Rechenknechten, auch wenn dies bei Einführung einschlägiger Rechenprogramme gelegentlich so verkündet wurde und noch wird. Sie spielt auch heute noch eine wichtige Mittlerrolle zwischen der Mechanik einerseits und den entwerfenden konstruierenden Fächern andererseits in der Lehre, Forschung und Anwendung. Die Statik und Dynamik sind mittlerweile zu dem avanciert, was man international als Computational Structural...