1.1 Zur Geschichte der industriellen Entwicklung
Die Entwicklung der Menschheitsgeschichte verlief nicht in einer stetigen Bahn, sondern sie war immer durch Schübe gekennzeichnet. Diese Schübe verliefen als Prozesse in sich selbst, von der Entdeckung eines Phänomens über die erste Anwendung, die Verbreitung der Erkenntnis, das Auffinden von Anwendungen. In der Neuzeit sind es Prozesse, die über Jahrzehnte gehen. Darüber hinaus überlagern sich Entwicklungen, verstärken sich gegenseitig und führen zu überraschenden Lösungen. Auf der Ebene der sich ausdifferenzierenden Branchen kommt es scheinbar zu Brüchen. Neue Entwicklungen reizten auch immer zur Perfektionierung der hergebrachten Technologien, etwa der Technik der Pferdekutsche und der Logistik mit Poststationen, die die substituierenden Technologien, hier die Dampflok und das Auto mit dem Verbrennungsmotor, in ihrer Vermarktung um Jahrzehnte verzögerten. Damit es zu einem industriellen Durchbruch kam, brauchte es meist mehrere Entwicklungsstränge, die sich gegenseitig durch Nachfrage-Effekte inspirieren mussten, etwa das Rad-Schiene-System (Dampfmaschine vs. Stahlindustrie) oder das System Auto-Pneu-Fahrbahn (Verbrennungsmotor, industrielle Gummiherstellung, Makadamisierung). Man kann an dieser Stelle regelmäßig Staueffekte erkennen, die sich dann quasi schlagartig lösen, wenn die neue Technologie einen Leistungsstand erreicht hat, der von der alten Technik nicht mehr bewältigt werden kann. Die vorlaufenden Entwicklungen brauchten lange, bis sie sich in verschiedenen Branchen niederschlugen. So ist etwa das 3-D-Drucken, das als Ausprägung der Industrie 4.0 herangezogen wird, keinesfalls eine Erfindung des 21. Jahrhunderts, sondern es wurde bereits in den 80er-Jahren des letzten Jahrhunderts als Aufbauschweißen in der Stahlindustrie angewendet. Insofern darf man den Begriff Disruption nur als Kennzeichen eines schubartigen Wandels auf Branchen- und Unternehmensebene sehen, wobei Beginn und Ende diffus sind, keinesfalls digital (ein-aus) und immer schwer vorhersehbar. Wie das Beispiel des Schienen- und Straßenverkehrs zeigt, kamen dabei meist mehrere Technologien zusammen. Zweifelsfrei gewannen dabei diejenigen Unternehmer, die die Protagonisten der neuen Entwicklung waren, und es gingen die unter, die sich dagegenstemmten, denn die Zeit der alten Technologie war abgelaufen. Unternehmer, die den Wechsel über eine technologische Revolution hinweg überstanden, waren eher die Ausnahme. Und der Glaube an die althergebrachte Technologie bremste die technische Entwicklung. So war Kaiser Wilhelm II. überzeugt, dass das Auto nur eine periodische Erscheinung sei und dass das Pferd mit Wagen langfristig den Verkehr dominieren werde.
Zur Einordnung der sogenannten Industrie 4.0 folgt an dieser Stelle ein kurzer Abriss der technisch-sozialen Revolutionen, die in der Neuzeit stattfanden. Die Ordnung in vier diskrete, zeitlich verdichtete technologisch-soziale Revolutionen, wie es heute im deutschsprachigen Raum gängige Praxis ist, ist wissenschaftlich nicht haltbar. Dem widersprechen auch andere Wellentheorien, etwa das Modell der neuzeitlichen M&A-Wellen, die anders verliefen als die industriellen Revolutionen.2 Wie erläutert wurde, liegen die maßgeblichen Grundlagenentwicklungen der Neuzeit häufig um viele Jahrzehnte vor der breiten industriellen Anwendung. Fälschlich impliziert dies ja, dass es zwischen den vorgenannten industriellen Revolutionen keine großen Entwicklungsschübe gegeben hat. So entstand das Auto in der Periode zwischen der zweiten und dritten industriellen Revolution. Insofern ist es nicht verwunderlich, dass verschiedene Autoren und verschiedene Berater die einzelnen „Revolutionen“ anders datieren und unterschiedlich definieren. Bezeichnenderweise weichen die US-Amerikaner und die Chinesen diesem Problem aus, indem Erstere das aktuelle Veränderungs-Phänomen mit der Formulierung „Industrial Internet of Things (IIoT) bezeichnen (siehe Kapitel 4) und die Chinesen von „Industrie 2025“ sprechen (siehe Kapitel 5).
Da das vorliegende Buch keine sozial- und technikhistorische Abhandlung bieten kann, sei an dieser Stelle nur kurz auf diesen Missklang hingewiesen und ansonsten der in Deutschland gängigen Praxis gefolgt, von vier technisch-wirtschaftlichen Revolutionen zu sprechen. Letztlich geht es beim vorliegenden Buch um die Verteidigung des Industriestandortes Deutschland und Europa, da mögen historische Vereinfachungen zulässig sein.
1.2 Meilensteine der technisch-industriellen Entwicklung von 1750 bis 1960
Im Folgenden werden die technisch-sozialen Revolutionen verkürzend und stichwortartig an jeweils herausragenden technischen Neuerungen festgemacht. Dies soll verdeutlichen, dass es sich um schubartige Entwicklungen gehandelt hat, die aber oft einen langen historischen Vorlauf hatten, weit vor der eigentlichen technischen Revolution, und die bis zur Durchsetzung gegenüber der herkömmlichen Technologie eine Phase der technologischen Verbesserungen durchlaufen haben und sich gegen Optimierungen der herkömmlichen Technologien durchsetzen mussten. Von einem schlagartigen Wandel kann nicht die Rede sein. Insofern ist auch der für die derzeit stattfindende Entwicklung gebräuchliche Begriff der „Disruption“ mit Vorsicht zu verwenden und zumindest von Branche zu Branche unterschiedlich zu interpretieren. Zur zusammenfassenden sozio-ökonomischen Entwicklung siehe Abbildung 1.1.
Abb. 1.1: Zur Geschichte der industriellen Revolutionen
1.2.1 Die erste industrielle Revolution
Die sogenannte erste industrielle Revolution ist in den Zeitraum von 1750 bis 1780 zu datieren. Sie gilt als Periode der Mechanisierung. Zentrale Erfindungen und Entwicklungen sind:
Mechanischer Webstuhl
Bereits im 16. Jahrhundert entwickelte man die ersten maschinellen Webstühle, die meist wassergetriebenen Bandmühlen. 1785 erhielt Edmund Cartwright (1743–1823) das Patent auf den ersten funktionsfähigen mechanischen Webstuhl. Dies führte zur Industrialisierung der Textilwirtschaft und letztlich zu sozialen Spannungen wie den Weberaufständen.
Vom Eisen zum Stahl
Das Roheisen wird im seit 1742 angewendeten Gussstahlverfahren zusammen mit Schrott geschmolzen. Im Jahre 1784 entwickelte Henry Cort (1740–1800) in England das Puddelverfahren. Dabei wird die schon zäh werdende Roheisenmasse mit Stangen gewendet, sodass möglichst viel der Oberfläche mit der Umgebungsluft in Berührung kommen kann. Durch diesen Sauerstoffkontakt wird das Roheisen gefrischt und so zu Stahl verarbeitet.
Dampfmaschine
Die Anwendungen der ersten funktionsfähigen Dampfmaschine von Thomas Newcomen (1663–1729) fanden sich ab Anfang des 18. Jahrhunderts im Steinkohlebergbau zur Wasserhaltung. James Watt (1736–1819) verbesserte die damals verbreitete Newcomen-Dampfmaschine ganz wesentlich. Seine Maschine von 1788 ebnete den Weg für Serien- und Massenproduktion, wie sie in Großbetrieben und Fabriken ablaufen.
Fließband
Bereits im späten 15. Jahrhundert wurden in Venedig Schiffe fließbandartig gefertigt. 1785 ließ Honoré Blanc (1736–1801) für Ludwig XV. Musketen in Massenproduktion herstellen. Eli Whitney (1765–1825) gewann 1798 den Auftrag der amerikanischen Regierung zur Fertigung von 10.000 Musketen. Er setzte als Erster ein Fließband zur industriellen Massenfertigung ein, das von einer Dampfmaschine betrieben wurde. Henry Ford (1863–1947) setzte die Fließbandfertigung erstmals 1913 in der Autoindustrie ein. Er soll dabei auf die Prozesse in den Schlachthöfen Bezug genommen haben.
1.2.2 Die zweite industrielle Revolution
Sie lässt sich für den Zeitraum von 1850 bis 1870 ansetzen. Sie ist durch die Stahlwirtschaft und Elektrifizierung gekennzeichnet. Zentrale Erfindungen und Entwicklungen sind:
Industrielle Stahlerzeugung
Im Windfrischverfahren werden Begleitstoffe des Eisens, vor allem Kohlenstoff, durch Verbrennung weitgehend entfernt. Das nunmehr härtbare Material wird unter dem Begriff „Stahl“ geführt. Das auch „saures Windfrischverfahren“ genannte Bessemerverfahren wurde 1855 von Henry Bessemer (1813–1898) entwickelt. Das Thomasverfahren (auch „basisches Windfrischverfahren“ genannt) wurde 1878 von Percy Carlyle Gilchrist (1851–1935) und Sidney Thomas (1850–1885) erfunden.
Das...