Science of Synthesis: Asymmetric Organocatalysis 2 – Brønsted Base and Acid Catalysts, and Additional Topics | 1 |
Organizational Structure of Science of Synthesis | 2 |
Science of Synthesis Reference Library | 3 |
Title page | 5 |
Imprint | 7 |
Preface | 8 |
Asymmetric Organocatalysis Volumes | 10 |
Abstracts | 12 |
Overview | 24 |
Table of Contents | 26 |
2.1 Brønsted Bases | 48 |
2.1.1 Chiral Guanidine and Amidine Organocatalysts | 48 |
2.1.1.1 Synthesis of 2-Aminoacetonitriles | 49 |
2.1.1.1.1 Catalytic Asymmetric Strecker Reactions | 49 |
2.1.1.2 Synthesis of Chiral Alcohols | 50 |
2.1.1.2.1 Catalytic Nitroaldol (Henry) Reactions | 50 |
2.1.1.2.1.1 Nitroaldol Reactions with a-Chiral Aldehydes | 53 |
2.1.1.2.1.2 Nitroaldol Reactions with a-Keto Esters | 54 |
2.1.1.2.2 Catalytic Asymmetric Aldol Reactions | 55 |
2.1.1.2.2.1 Aldol Reactions with Dihalofuran-2(5H)-ones | 57 |
2.1.1.3 Synthesis of Chiral Amines | 59 |
2.1.1.3.1 Catalytic Asymmetric Nitro-Mannich-Type Reactions | 59 |
2.1.1.3.1.1 Nitro-Mannich-Type Reactions with Nitroacetates | 63 |
2.1.1.3.1.2 Nitro-Mannich-Type Reactions with a-Substituted Nitroacetates | 64 |
2.1.1.3.2 Catalytic Asymmetric Mannich-Type Reactions | 65 |
2.1.1.4 Synthesis of Chiral Nitroalkanes | 67 |
2.1.1.4.1 Catalytic Asymmetric Michael Reactions | 67 |
2.1.1.4.1.1 Michael Reactions with ß-Keto Esters | 69 |
2.1.1.4.1.2 Michael Reactions with Phenols | 71 |
2.1.1.4.1.3 Michael Reactions with Nitroalkanes | 72 |
2.1.1.4.1.4 Michael Reactions with 4,7-Dihydroindoles | 73 |
2.1.1.5 Synthesis of Chiral Epoxy Ketones | 75 |
2.1.1.5.1 Catalytic Asymmetric Nucleophilic Epoxidation Reactions | 75 |
2.1.1.6 Synthesis of Chiral Hydrazines | 76 |
2.1.1.6.1 Catalytic Asymmetric Amination Reactions | 76 |
2.1.1.7 Synthesis of Chiral Phosphonates and Phosphine Oxides | 78 |
2.1.1.7.1 Catalytic Asymmetric 1,4-Addition Reactions | 78 |
2.1.1.7.1.1 1,4-Addition Reactions with Phosphites | 78 |
2.1.1.7.1.2 1,4-Addition Reactions with Phosphine Oxides | 79 |
2.1.1.8 Synthesis of Chiral d-Lactones | 80 |
2.1.1.8.1 Catalytic Asymmetric Inverse-Electron-Demand Hetero-Diels--Alder Reactions | 80 |
2.1.1.9 Synthesis of Chiral Pyrrolidines | 83 |
2.1.1.9.1 Catalytic Asymmetric [3 + 2]-Cycloaddition Reactions | 83 |
2.1.1.10 Synthesis of Chiral a-Keto Esters | 84 |
2.1.1.10.1 Catalytic Asymmetric Claisen Rearrangement Reactions | 84 |
2.1.2 Cinchona Alkaloid Organocatalysts | 88 |
2.1.2.1 Nucleophilic Catalysis | 89 |
2.1.2.1.1 Asymmetric Reactions with Ketenes | 90 |
2.1.2.1.1.1 Synthesis of ß-Lactones | 90 |
2.1.2.1.1.2 Intramolecular Synthesis of ß-Lactones | 91 |
2.1.2.1.1.3 Synthesis of ß-Lactams | 92 |
2.1.2.1.1.4 Synthesis of ß-Oxo Amides | 93 |
2.1.2.1.1.5 Asymmetric Synthesis of a-Halogenated Esters | 94 |
2.1.2.1.1.6 Cycloaddition of Ketenes and N-Thioacylimines | 95 |
2.1.2.1.2 Asymmetric Morita--Baylis--Hillman Reactions | 96 |
2.1.2.1.2.1 Synthesis of Hydroxy Acrylates | 97 |
2.1.2.1.2.2 Synthesis of Sulfonamido Enones | 98 |
2.1.2.1.3 Enantioselective Protonation | 99 |
2.1.2.1.3.1 Thiol Addition to Alkyl(silyl)ketenes | 99 |
2.1.2.1.4 Asymmetric Cyanation of Simple Ketones | 100 |
2.1.2.1.4.1 Synthesis of Cyanohydrin Carbonates | 100 |
2.1.2.1.5 Asymmetric Conjugate Additions | 101 |
2.1.2.1.5.1 Synthesis of tert-Butyl Cyclopropanecarboxylates | 102 |
2.1.2.1.5.2 Reaction of Indole with Morita--Baylis--Hillman Adducts | 102 |
2.1.2.1.5.3 Reaction of Furan-2-ones with Morita--Baylis--Hillman Adducts | 103 |
2.1.2.1.6 Asymmetric Electrophilic Halogenation of Alkenes | 104 |
2.1.2.1.6.1 Chlorolactonization of Pent-4-enoic Acid | 104 |
2.1.2.2 Enantioselective Base Catalysis | 105 |
2.1.2.2.1 Asymmetric Brønsted Base Catalysis | 105 |
2.1.2.2.1.1 Asymmetric Protonation of Silyl Enol Ethers | 106 |
2.1.2.2.1.2 Alcoholysis of Anhydrides in the Presence of a Cinchona-Derived Catalyst | 107 |
2.1.2.2.1.3 Alcoholysis in the Presence of a Substoichiometric Amount of Catalyst and a Stoichiometric Amount of an Achiral Base | 108 |
2.1.2.2.1.4 Enantioselective Alcoholysis of Monosubstituted Succinic Anhydrides by Parallel Kinetic Resolution | 109 |
2.1.2.2.1.5 Alcoholysis of Urethane-Protected a-Amino Acid N-Carboxyanhydrides by Kinetic Resolution | 111 |
2.1.2.2.1.6 Alcoholysis of 1,3-Dioxolane-2,4-diones by Dynamic Kinetic Resolution | 113 |
2.1.2.2.2 Asymmetric Lewis Base Catalysis | 114 |
2.1.2.2.2.1 Asymmetric Sulfinyl Transfer Reactions via Dynamic Kinetic Resolution of Sulfinyl Chlorides: Synthesis of Sulfinates in the Presence of a Stoichiometric Amount of Catalyst | 115 |
2.1.2.2.2.2 Synthesis of Sulfinates in the Presence of a Catalytic Amount of Catalyst and a Stoichiometric Amount of Achiral Base | 116 |
2.1.2.2.2.3 Fluorodesilylation of Allylsilanes: Synthesis of Chiral Alkyl Fluorides | 117 |
2.1.2.2.2.4 Conjugate Addition of Thiols to Cyclic Enones | 118 |
2.1.2.2.2.5 Conjugate Addition of 1,3-Dicarbonyl Compounds to Alkynones | 119 |
2.1.2.2.2.6 Conjugate Addition of 1,3-Dicarbonyl Compounds to Enones | 120 |
2.1.2.2.2.7 Conjugate Addition of Alkylidenemalononitriles | 121 |
2.1.2.2.2.8 Asymmetric Mannich Reaction of a-Substituted Cyanoacetates | 122 |
2.1.2.2.2.9 Asymmetric Aldol Reaction of Oxindoles with Trifluoropyruvate | 123 |
2.1.2.3 Acid--Base Cooperative Catalysis | 124 |
2.1.2.3.1 Asymmetric 1,2-Addition to Carbonyl Compounds | 124 |
2.1.2.3.1.1 Aldol Reaction of Cyclic Ketones | 124 |
2.1.2.3.1.2 Aldol Reaction of Acyclic Ketones | 125 |
2.1.2.3.1.3 Intramolecular Aldol Reaction of Diketones | 127 |
2.1.2.3.2 Asymmetric 1,2-Addition to Imines | 128 |
2.1.2.3.2.1 Hydrophosphonylation Reaction of Imines with Phosphites | 128 |
2.1.2.3.2.2 Reaction of ß-Oxo Esters with Imines | 129 |
2.1.2.3.3 Asymmetric Friedel--Crafts Reactions | 130 |
2.1.2.3.3.1 Reaction of Indoles and Trifluoropyruvate | 131 |
2.1.2.3.3.2 Reaction of Indoles with Aldehydes or Pyruvates | 132 |
2.1.2.3.3.3 Reaction of Indoles and Imines | 134 |
2.1.2.3.4 Asymmetric Fragmentation | 135 |
2.1.2.3.4.1 Enantioselective Fragmentation of Cyclic meso-Peroxides | 136 |
2.1.2.3.4.2 Desymmetrization of meso-Cyclopropane-Fused Cyclopentanones and Epoxycyclopentanones | 137 |
2.1.2.3.5 Desymmetrization of meso-Diols | 138 |
2.1.2.3.5.1 Monobenzoylation of meso-Diols | 138 |
2.1.2.3.6 Asymmetric Halolactonization | 139 |
2.1.2.3.6.1 Asymmetric Bromolactonization of Pentenoic Acids | 139 |
2.1.2.3.6.2 Asymmetric Bromolactonization of Z-Enynes | 140 |
2.1.2.4 Base--Iminium Catalysis | 141 |
2.1.2.4.1 Asymmetric Conjugate Additions | 141 |
2.1.2.4.1.1 Vinylogous Michael Addition of a,a-Dicyanoalkenes to Enones | 142 |
2.1.2.4.1.2 Conjugate Addition of Benzannulated Cyclic 1,3-Dicarbonyl Compounds to Enones | 143 |
2.1.2.4.1.3 Conjugate Addition of Nitrogen Nucleophiles to Enones | 144 |
2.1.2.4.1.4 Aziridination of Enones | 145 |
2.1.2.4.1.5 Epoxidation of Cyclic Enones | 146 |
2.1.2.4.1.6 Epoxidation of Acyclic Enones | 148 |
2.1.2.4.2 Asymmetric Conjugated Friedel--Crafts Alkylations | 149 |
2.1.2.4.2.1 Friedel--Crafts Addition of Indoles to a,ß-Unsaturated Ketones | 149 |
2.1.2.4.3 Asymmetric Diels--Alder Reactions | 150 |
2.1.2.4.3.1 Diels--Alder Reaction of 2H-Pyran-2-ones with a,ß-Unsaturated Ketones | 151 |
2.1.2.4.4 Semipinacol-Type 1,2-Carbon Migrations | 152 |
2.1.2.4.4.1 a-Ketol Rearrangement of Cyclic Hydroxy Enones to Chiral Spirocyclic Diketones | 152 |
2.1.2.5 Multifunctional Cooperative Catalysis | 154 |
2.1.2.5.1 Catalytic Asymmetric Peroxidations | 154 |
2.1.2.5.1.1 Reaction of a,ß-Unsaturated Ketones with Hydroperoxides | 154 |
2.1.2.5.1.2 Synthesis of Cyclic Peroxyhemiketals | 158 |
2.1.2.5.2 1,3-Dipolar Cycloadditions | 158 |
2.1.2.5.2.1 Cycloaddition of Cyclic Enones and Azomethine Imines | 159 |
2.1.2.6 Conclusion | 160 |
2.1.3 Bifunctional Cinchona Alkaloid Organocatalysts | 166 |
2.1.3.1 Bifunctional Cinchona Alkaloid Organocatalysts: Cooperative Catalysis | 167 |
2.1.3.1.1 Bifunctional Catalysts Based on 9-Urea and 9-Thiourea Cinchona Alkaloids | 167 |
2.1.3.1.2 Bifunctional Catalysts Based on 6'-Thiourea Cinchona Alkaloids | 183 |
2.1.3.1.3 Bifunctional Catalysts Based on 9-Squaramide Cinchona Alkaloids | 184 |
2.1.3.1.4 Cupreine and Cupreidine Derivatives as Bifunctional Catalysts | 187 |
2.1.3.1.5 ß-Isocupreidine as a Bifunctional Catalyst | 200 |
2.1.3.2 Bifunctional Cinchona Alkaloid Organocatalysts: Self-Association Problem | 203 |
2.1.3.2.1 Self-Association Phenomena of Bifunctional Organocatalysts | 203 |
2.1.3.2.2 Self-Association-Free Bifunctional Cinchona Alkaloid Organocatalysts | 204 |
2.1.3.2.2.1 9-Squaramide Dimeric Cinchona Alkaloids | 204 |
2.1.3.2.2.2 9-Sulfonamide Cinchona Alkaloids | 207 |
2.1.3.3 Conclusions | 212 |
2.2 Brønsted Acids | 216 |
2.2.1 Phosphoric Acid Catalyzed Reactions of Imines | 216 |
2.2.1.1 Nucleophilic Addition to Imines | 217 |
2.2.1.1.1 Mannich and Related Reactions | 218 |
2.2.1.1.2 Strecker Reaction | 224 |
2.2.1.1.3 Friedel--Crafts Reactions | 225 |
2.2.1.1.4 Ene-Type Reactions | 234 |
2.2.1.1.5 Allylation Reactions | 237 |
2.2.1.1.6 Carbon--Heteroatom Bond-Forming Reactions | 238 |
2.2.1.2 Cycloaddition to Imines | 243 |
2.2.1.2.1 Aza-Diels--Alder Reactions | 243 |
2.2.1.2.2 1,3-Dipolar Cycloaddition | 248 |
2.2.1.3 Transfer Hydrogenation of Imines | 252 |
2.2.1.3.1 Reduction of Imines | 252 |
2.2.1.3.2 Reduction of Quinolines | 259 |
2.2.2 Phosphoric Acid Catalysis of Reactions Not Involving Imines | 266 |
2.2.2.1 Reactions of Carbonyl Compounds | 266 |
2.2.2.1.1 Reactions of a,ß-Unsaturated Carbonyl Compounds | 267 |
2.2.2.1.1.1 Diels--Alder Reaction | 267 |
2.2.2.1.1.2 Friedel--Crafts Reaction | 269 |
2.2.2.1.1.3 Nazarov Cyclization | 274 |
2.2.2.1.1.4 Epoxidation | 276 |
2.2.2.1.1.5 Oxa-Michael Reaction | 279 |
2.2.2.1.1.6 Aza-Michael Reaction | 280 |
2.2.2.1.2 Reactions of Ketones and Aldehydes | 281 |
2.2.2.1.2.1 Aza-Ene-Type Reaction | 281 |
2.2.2.1.2.2 Carbonyl-Ene Reaction | 283 |
2.2.2.1.2.3 Allylboration | 284 |
2.2.2.1.2.4 Hetero-Diels--Alder Reaction | 286 |
2.2.2.1.2.5 Intramolecular Aldol Reaction (Robinson-Type Annulation) | 288 |
2.2.2.1.2.6 Baeyer--Villiger Oxidation | 289 |
2.2.2.2 Reactions of Hemiaminal Ethers and Acetals | 291 |
2.2.2.2.1 Reactions of Hemiaminal Ethers | 291 |
2.2.2.2.1.1 Aza-Ene Type Reaction | 291 |
2.2.2.2.1.2 Aza-Petasis--Ferrier Rearrangement | 295 |
2.2.2.2.2 Reactions of Acetals | 296 |
2.2.2.3 Reactions of Nitroalkenes | 298 |
2.2.2.3.1 Friedel--Crafts Reaction | 298 |
2.2.2.4 Reactions of Nitrones | 301 |
2.2.2.4.1 1,3-Dipolar Cycloaddition | 301 |
2.2.2.5 Reactions of Nitroso Compounds | 302 |
2.2.2.5.1 a-Hydroxylation of 1,3-Dicarbonyl Compounds | 302 |
2.2.2.5.2 a-Aminoxylation of Enecarbamates | 304 |
2.2.2.6 Reactions of Strained Small-Ring Compounds | 304 |
2.2.2.6.1 Ring Opening of Aziridines and Related Reactions | 304 |
2.2.2.7 Reactions of Electron-Rich Alkenes | 309 |
2.2.2.7.1 Reactions of Enecarbamates and Enamides | 309 |
2.2.2.7.1.1 Friedel--Crafts Reaction | 309 |
2.2.2.7.1.2 Aza-Ene-Type Reaction | 311 |
2.2.2.7.2 Reactions of Vinyl Ethers and Analogues | 312 |
2.2.2.7.2.1 Aldol-Type Reaction | 312 |
2.2.2.7.2.2 Semipinacol Rearrangement | 314 |
2.2.2.7.2.3 Protonation of Silyl Enol Ethers | 316 |
2.2.2.7.2.4 Addition Reaction to Vinyl-1H-indoles | 317 |
2.2.2.7.3 Reactions of Nonactivated Alkenes and Analogues | 319 |
2.2.2.7.3.1 Hydroamination of Alkenes | 319 |
2.2.2.7.3.2 Hydroamination of Dienes and Allenes | 319 |
2.2.3 Brønsted Acid Catalysts Other than Phosphoric Acids | 326 |
2.2.3.1 Carboxylic Acids | 326 |
2.2.3.1.1 Imines as Electrophiles | 326 |
2.2.3.1.1.1 Nucleophilic Additions of Diazo Compounds | 326 |
2.2.3.1.1.2 Nucleophilic Additions of Aza-enamines (N,N-Dialkylhydrazones) | 329 |
2.2.3.1.1.3 Alkynylation of Imines | 331 |
2.2.3.1.1.4 Friedel--Crafts Reactions | 332 |
2.2.3.1.2 O-Nitroso Aldol Reactions | 333 |
2.2.3.2 Amides and Sulfonamides | 333 |
2.2.3.2.1 Hetero-Diels--Alder Reactions | 333 |
2.2.3.2.2 Double Michael Addition/Aromatization | 335 |
2.2.3.3 1,1'-Bi-2-naphthol and Its Derivatives | 336 |
2.2.3.3.1 Allyl-, Alkenyl-, Alkynyl-, and Arylborations | 336 |
2.2.3.3.1.1 Allylboration of Ketones | 336 |
2.2.3.3.1.2 Alkenyl- and Alkynylboration of Enones | 337 |
2.2.3.3.1.3 Allyl-, Alkenyl-, Alkynyl-, and Arylboration of Imines | 338 |
2.2.3.3.2 Enamine Mannich Reactions | 341 |
2.2.3.4 Disulfonimides and Aryldisulfonylmethanes | 341 |
2.2.3.4.1 Mukaiyama Aldol Reactions | 341 |
2.2.3.4.2 Mannich-Type Reactions | 342 |
2.2.4 Hydrogen-Bonding Catalysts: (Thio)urea Catalysis | 344 |
2.2.4.1 On the Way to Thiourea Organocatalysts | 344 |
2.2.4.2 Thiourea Derivatives as Organocatalysts in Organic Synthesis | 346 |
2.2.4.2.1 Nonstereoselective Transformations with Achiral Thiourea Derivatives | 346 |
2.2.4.2.2 Stereoselective Transformations with Chiral Thiourea Derivatives | 347 |
2.2.4.3 Michael Addition | 348 |
2.2.4.3.1 Michael Addition of 1,3-Dioxolan-4-ones to 1-Nitro-2-phenylethenes | 348 |
2.2.4.3.2 Michael Addition of Aldehydes to Nitroalkenes | 349 |
2.2.4.3.3 Michael Addition of a-Cyano Ketones to a,ß-Unsaturated Trifluoromethyl Ketones | 350 |
2.2.4.3.4 Michael Addition of Diethyl Malonate to (E)-Chalcones | 352 |
2.2.4.3.5 Michael Addition of Malononitriles to a,ß-Unsaturated 1-Acylpyrrolidinones | 353 |
2.2.4.3.6 Michael Addition of Nitroalkanes to Nitroalkenes | 354 |
2.2.4.3.7 Michael Addition of Oximes to Aliphatic Nitroalkenes | 355 |
2.2.4.3.8 Michael Addition of 3-Substituted Oxindoles to Nitroalkenes | 356 |
2.2.4.3.9 Michael Addition of Oxindoles to Maleimides | 358 |
2.2.4.3.10 Phospha-Michael Addition of Diarylphosphine Oxides to a,ß-Unsaturated Ketones | 359 |
2.2.4.3.11 Sulfa-Michael Addition of Alkanethiols to a,ß-Unsaturated N-Acylated Oxazolidin-2-ones | 360 |
2.2.4.3.12 Michael Addition of Cyclohexanone to Nitroalkenes | 362 |
2.2.4.3.13 Intramolecular Michael Addition of Nitronates to Conjugated Esters | 363 |
2.2.4.3.14 Michael Addition of a,a-Disubstituted Aldehydes to Nitroalkenes | 364 |
2.2.4.3.15 Michael Addition of 1,3-Dicarbonyl Compounds to Nitroalkenes | 365 |
2.2.4.3.16 Nitrocyclopropanation of a,ß-Unsaturated a-Cyanoimides with Bromonitromethane | 367 |
2.2.4.3.17 Michael Addition: Substrate Scope | 368 |
2.2.4.4 Mannich Reaction | 369 |
2.2.4.4.1 Mannich Reaction of Phosphorus Ylides with Imines | 369 |
2.2.4.4.2 Mannich Reaction of Malonates with Imines | 369 |
2.2.4.4.3 Mannich Reaction of Fluorinated ß-Keto Esters with Imines | 370 |
2.2.4.4.4 Mannich Reactions of a-Amido Sulfones or Sulfonylimines | 371 |
2.2.4.4.5 Mannich Reaction of Lactones with Imines | 374 |
2.2.4.4.6 Mannich Reaction of Oxindoles with Imines | 375 |
2.2.4.4.7 Mannich Reaction of Ketones with Hydrazones | 376 |
2.2.4.4.8 Mannich Reaction of Ketene Silyl Acetals with Imines | 377 |
2.2.4.4.9 Vinylogous Mannich Reaction | 378 |
2.2.4.4.10 Nitro-Mannich Reaction/Aza-Henry Reaction | 379 |
2.2.4.4.10.1 Nitro-Mannich/Aza-Henry Reaction of Nitroalkanes with Imines | 379 |
2.2.4.4.10.2 Nitro-Mannich/Aza-Henry Reaction of Nitroalkanes with a-Amido Sulfones | 381 |
2.2.4.4.10.3 Nitro-Mannich/Aza-Henry Reaction of Nitroacetates with Imines | 382 |
2.2.4.4.11 Acyl-Mannich Reaction | 383 |
2.2.4.4.12 anti-Mannich Reaction | 385 |
2.2.4.5 Henry Reaction/Nitroaldol Reaction | 386 |
2.2.4.6 Aldol Reaction | 387 |
2.2.4.6.1 Aldol Reaction of a-Isothiocyanato Imides with Aldehydes | 387 |
2.2.4.6.2 Aldol Reaction of a-Isothiocyanato Imides with a-Keto Esters | 388 |
2.2.4.6.3 Aldol Reaction of Aromatic Aldehydes with Cyclohexanone | 389 |
2.2.4.6.4 Vinylogous Aldol Reaction | 390 |
2.2.4.6.5 Vinylogous Mukaiyama Aldol Reaction | 391 |
2.2.4.7 Morita--Baylis--Hillman Reaction | 393 |
2.2.4.7.1 Morita--Baylis--Hillman Reaction of Cyclohex-2-enone with Aldehydes | 393 |
2.2.4.7.2 Morita--Baylis--Hillman Reaction of Methyl Vinyl Ketone with Aldehydes | 396 |
2.2.4.7.3 Aza-Morita--Baylis--Hillman Reaction of Imines with Acrylates or Methyl Vinyl Ketone | 397 |
2.2.4.7.4 Aza-Morita--Baylis--Hillman-Type Reactions of N-Tosylimines with Nitroalkenes | 399 |
2.2.4.8 Strecker Reaction | 400 |
2.2.4.8.1 Strecker Reaction: Catalytic Addition of Hydrogen Cyanide or Trimethylsilyl Cyanide to Aldimines | 400 |
2.2.4.8.2 Strecker Reaction: Catalytic Addition of Hydrogen Cyanide or Trimethylsilyl Cyanide to Ketimines | 405 |
2.2.4.8.3 Strecker Reaction: Acylcyanation of Imines | 406 |
2.2.4.8.4 Acyl-Strecker Reaction in One Pot | 407 |
2.2.4.9 Cyanosilylation | 409 |
2.2.4.10 Hydrophosphonylation | 410 |
2.2.4.10.1 Hydrophosphonylation of Imines | 410 |
2.2.4.10.2 Hydrophosphonylation of a-Keto Esters | 412 |
2.2.4.11 Friedel--Crafts Reaction | 413 |
2.2.4.11.1 Friedel--Crafts Reaction of Indoles with Imines | 413 |
2.2.4.11.2 Friedel--Crafts Reaction of Naphthols with Nitroalkenes | 414 |
2.2.4.11.3 Friedel--Crafts Reaction of Naphthols with ß,.-Unsaturated a-Keto Esters | 416 |
2.2.4.11.4 Friedel--Crafts Reactions of Sesamol with Nitrostyrenes | 417 |
2.2.4.11.5 Friedel--Crafts Reaction of Indoles with Acylphosphonates | 418 |
2.2.4.12 Desymmetrizations | 420 |
2.2.4.12.1 meso-Anhydride Desymmetrization | 420 |
2.2.4.12.2 Ring Opening of Aziridines | 423 |
2.2.4.13 Kinetic Resolutions | 424 |
2.2.4.13.1 Kinetic Resolution of Propargylic Amines | 424 |
2.2.4.14 Cycloadditions | 426 |
2.2.4.14.1 Diels--Alder Reaction | 426 |
2.2.4.14.2 [3 + 2] Cycloaddition | 428 |
2.2.4.14.3 1,3-Dipolar Cycloaddition | 429 |
2.2.4.15 Pictet--Spengler Reaction | 430 |
2.2.4.15.1 Cyclization of Hydroxy Lactams | 430 |
2.2.4.15.2 Cyclization of Pyrroles onto N-Acyliminium Ions | 432 |
2.2.4.15.3 Acyl-Pictet--Spengler Reaction | 433 |
2.2.4.15.4 Protio-Pictet--Spengler Reaction | 435 |
2.2.4.16 Biginelli Reaction | 436 |
2.2.4.16.1 Biginelli Reaction of (Thio)ureas with Benzaldehydes and Ethyl Acetoacetate | 436 |
2.2.4.17 Petasis Reaction | 438 |
2.2.4.17.1 Petasis-Type 2-Vinylation of Quinolines | 438 |
2.2.4.18 Transfer Hydrogenation | 440 |
2.2.4.18.1 Transfer Hydrogenation of Nitroalkenes | 440 |
2.2.4.18.2 Transfer Hydrogenation of ß-Nitroacrylates | 441 |
2.2.4.19 Reduction of Ketones | 442 |
2.2.4.20 a-Amination | 443 |
2.2.4.20.1 a-Amination of a-Cyano Ketones | 443 |
2.2.4.20.2 a-Amination of Aldehydes | 445 |
2.2.4.21 a-Alkylation of Aldehydes | 447 |
2.2.4.22 a-Chlorination of Aldehydes | 449 |
2.2.4.23 Cationic Polycyclization | 450 |
2.2.4.23.1 Cationic Polycyclizations of Lactam Derivatives | 450 |
2.2.4.24 Addition to Oxocarbenium Ions | 452 |
2.2.4.24.1 Addition to Oxocarbenium Ions: Synthesis of 3,4-Dihydro-1H-2-benzopyran Derivatives | 452 |
2.2.5 Hydrogen-Bonding Catalysts Other than Ureas and Thioureas | 460 |
2.2.5.1 Nonionic Hydrogen-Bonding Catalysts | 460 |
2.2.5.1.1 Diols | 460 |
2.2.5.1.1.1 Hetero-Diels--Alder Reactions | 460 |
2.2.5.1.1.2 Diels--Alder Reactions | 462 |
2.2.5.1.1.3 Mukaiyama Aldol Reactions | 463 |
2.2.5.2 Ionic Hydrogen-Bonding Catalysts | 466 |
2.2.5.2.1 Guanidinium and Amidinium Salts | 466 |
2.2.5.2.1.1 Diels--Alder Reactions | 466 |
2.2.5.2.1.2 Aza-Henry Reactions | 467 |
2.2.5.2.1.3 Phospha-Mannich Reactions | 469 |
2.2.5.2.1.4 Michael Additions | 470 |
2.2.5.2.1.5 Claisen Rearrangements | 471 |
2.2.5.2.2 Aminophosphonium Salts | 473 |
2.2.5.2.2.1 Henry Reactions | 473 |
2.2.5.2.2.2 Hydrophosphonylation Reactions | 474 |
2.2.5.2.2.3 Mannich-Type Reactions | 475 |
2.2.5.2.2.4 Michael Additions | 476 |
2.2.5.2.2.5 Hetero-Michael Additions | 477 |
2.2.5.2.2.6 Protonation Reactions | 478 |
2.2.5.2.3 Pyridinium and Quinolinium Salts | 479 |
2.2.5.2.3.1 Mannich-Type Reactions | 479 |
2.2.5.2.3.2 Michael Additions | 480 |
2.2.6 Bifunctional (Thio)urea and BINOL Catalysts | 484 |
2.2.6.1 Bifunctional Amino (Thio)ureas | 484 |
2.2.6.1.1 Michael Addition with Nitroalkenes and Alkenyl Sulfones | 484 |
2.2.6.1.1.1 Addition of Active Methylene Compounds | 484 |
2.2.6.1.1.2 Addition of Ketones and Aldehydes | 492 |
2.2.6.1.1.3 Addition of Heteroatomic Compounds | 496 |
2.2.6.1.2 Michael Addition to a,ß-Unsaturated Ketones and Carboxylic Acid Derivatives | 498 |
2.2.6.1.2.1 Addition of Active Methylene Compounds to a,ß-Unsaturated Ketones | 498 |
2.2.6.1.2.2 Addition of Carbon and Heteroatom Nucleophiles to a,ß-Unsaturated Imides and Esters | 499 |
2.2.6.1.3 1,2-Nucleophilic Additions with Aldehydes and Ketones | 504 |
2.2.6.1.3.1 Addition of Carbon Nucleophiles to Aldehydes | 504 |
2.2.6.1.3.2 Addition of Trimethylsilyl Cyanide and Hydride to Ketones | 508 |
2.2.6.1.3.3 Addition of Alcohols to Lactones | 511 |
2.2.6.1.4 1,2-Nucleophilic Additions with Imines | 512 |
2.2.6.1.4.1 Addition of Active Methylene Compounds | 512 |
2.2.6.1.4.2 Addition of Ketones | 515 |
2.2.6.1.4.3 Addition of 1,1-Dicyanoalkenes | 516 |
2.2.6.1.5 Amination Reaction with Azodicarboxylates | 518 |
2.2.6.1.5.1 Addition of ß-Oxo Esters | 518 |
2.2.6.1.6 Other Amino Thiourea Catalyzed Reactions | 519 |
2.2.6.1.6.1 Asymmetric Nazarov Cyclization | 519 |
2.2.6.1.6.2 Asymmetric a-Alkylation of Aldehydes | 520 |
2.2.6.1.6.3 Asymmetric Iodolactonization of Alkenoic Acids | 522 |
2.2.6.2 Bifunctional Hydroxy (Thio)ureas | 524 |
2.2.6.2.1 Michael Addition with Electron-Deficient Alkenes | 524 |
2.2.6.2.1.1 Friedel--Crafts-Type Alkylation of Indoles with Nitroalkenes | 524 |
2.2.6.2.1.2 Michael Addition of Formaldehyde N,N-Dialkylhydrazones to ß,.-Unsaturated a-Oxo Esters | 526 |
2.2.6.2.1.3 Michael Addition of Alkenylboronic Acids to .-Hydroxy Enones | 527 |
2.2.6.2.2 1,2-Nucleophilic Addition with Imines and Quinolines | 529 |
2.2.6.2.2.1 Aza-Henry Reaction | 529 |
2.2.6.2.2.2 Petasis-Type Reaction of Quinolines with Alkenylboronic Acids | 530 |
2.2.6.3 Other Bifunctional (Thio)ureas | 532 |
2.2.6.3.1 Sulfinamide Ureas | 532 |
2.2.6.3.1.1 Allylation of Acylhydrazones | 532 |
2.2.6.3.2 Phosphino Thioureas | 534 |
2.2.6.3.2.1 [3 + 2] Cycloaddition of an Imine and an Allene | 534 |
2.2.6.3.2.2 Aza-Morita--Baylis--Hillman Reaction with Imines | 536 |
2.2.6.3.2.3 Ring Opening of Aziridines | 538 |
2.2.6.4 Bifunctional BINOLs | 540 |
2.2.6.4.1 BINOL-Pyridine Catalysts | 540 |
2.2.6.4.1.1 Aza-Morita--Baylis--Hillman Reaction with Imines | 540 |
2.3 Additional Topics | 546 |
2.3.1 Phase-Transfer Catalysis: Natural-Product-Derived PTC | 546 |
2.3.1.1 Cinchona-Derived Phase-Transfer Catalysts | 548 |
2.3.1.1.1 Alkylation Reactions | 548 |
2.3.1.1.1.1 a-Alkylation of a Glycine Schiff Base | 548 |
2.3.1.1.1.2 a,a-Dialkylation of a Glycine Schiff Base | 567 |
2.3.1.1.1.3 a-Alkylation of 4,5-Dihydrooxazole- and 4,5-Dihydrothiazole-4-carboxylates | 570 |
2.3.1.1.1.4 a-Alkylation of a-Alkoxycarbonyl Compounds | 572 |
2.3.1.1.1.5 a-Alkylation of ß-Oxo Esters | 573 |
2.3.1.1.2 Michael Additions | 576 |
2.3.1.1.3 Aldol Reactions | 580 |
2.3.1.1.4 Mannich Reaction | 582 |
2.3.1.1.5 Epoxidation Reactions | 583 |
2.3.1.1.5.1 Epoxidation with Hydrogen Peroxide | 584 |
2.3.1.1.5.2 Epoxidation with Potassium Hypochlorite | 585 |
2.3.1.1.6 Asymmetric Darzens Reactions | 586 |
2.3.1.1.7 Aziridination Reactions | 588 |
2.3.1.1.8 Hydroxylation Reactions | 589 |
2.3.1.1.8.1 a-Hydroxylation | 589 |
2.3.1.1.8.2 a-Dihydroxylation | 589 |
2.3.1.1.9 a-Fluorination Reactions | 590 |
2.3.1.2 Tartrate-Derived Phase-Transfer Catalysts | 591 |
2.3.2 Phase-Transfer Catalysis: Non-Natural-Product-Derived PTC | 598 |
2.3.2.1 Asymmetric Alkylation | 598 |
2.3.2.1.1 Asymmetric Benzylation of a Glycine Derivative for the Synthesis of a Phenylalanine Derivative | 598 |
2.3.2.1.1.1 Asymmetric Alkylation of Glycine Derivatives for the Synthesis of a-Alkyl-a-amino Acids | 602 |
2.3.2.1.1.2 Asymmetric Alkylation of a Glycine Derivative Using Recyclable Catalysts | 602 |
2.3.2.1.1.3 Synthesis of Biologically Active Compounds via the Asymmetric Alkylation of a Glycine Derivative | 604 |
2.3.2.1.2 Asymmetric Double Alkylation of a Glycine Derivative for the Synthesis of a,a-Dialkyl-a-amino Acids | 605 |
2.3.2.1.2.1 Asymmetric Alkylation of a-Alkyl-a-amino Acid Derivatives for the Synthesis of a,a-Dialkyl-a-amino Acids | 605 |
2.3.2.1.2.2 Asymmetric Alkylation of an Azlactone for the Synthesis of an a,a-Dialkyl-a-amino Acid | 606 |
2.3.2.1.2.3 Asymmetric Synthesis of a-Alkylated Serines | 607 |
2.3.2.1.2.4 Asymmetric Synthesis of a-Alkylated Cysteines | 607 |
2.3.2.1.2.5 Asymmetric Synthesis of Cyclic a-Alkyl Amino Acids | 608 |
2.3.2.1.3 N-Terminal Alkylation of Dipeptides | 608 |
2.3.2.1.3.1 N-Terminal Alkylation of Tri- and Tetrapeptides | 610 |
2.3.2.1.3.2 Alkylation of the Peptide Backbone of a C-Terminal Azlactone | 610 |
2.3.2.1.4 Asymmetric Alkylation of a Glycine Amide Schiff Base | 611 |
2.3.2.1.4.1 Diastereo- and Enantioselective Alkylation of a Glycine Amide Schiff Base through Kinetic Resolution of ß-Branched Racemic Alkyl Halides | 612 |
2.3.2.1.4.2 Asymmetric Alkylation of a Protected Glycine Weinreb Amide | 612 |
2.3.2.1.5 Asymmetric Alkylation of ß-Keto Esters | 614 |
2.3.2.1.5.1 Asymmetric Alkylation of a 3-Oxoproline Derivative | 614 |
2.3.2.1.5.2 Asymmetric Alkylation of a-(Benzoyloxy)-ß-keto Esters | 615 |
2.3.2.1.5.3 Asymmetric Alkylation of a ß-Amino-ß-oxo Ester | 616 |
2.3.2.1.6 Asymmetric Alkylation of a-Cyanocarboxylates | 616 |
2.3.2.1.7 Asymmetric Alkylation of a-Alkynyl Esters | 617 |
2.3.2.1.7.1 Alkene Isomerization/a-Alkylation of an a-Alkynylcrotonate as a Route to a 1,4-Enyne | 618 |
2.3.2.1.7.2 Asymmetric Alkylation of 5-[(Triphenylsilyl)ethynyl]-1,3-dioxolan-4-one | 618 |
2.3.2.1.8 Asymmetric Alkylation of Diaryloxazolidine-2,4-diones | 619 |
2.3.2.2 Asymmetric Michael Additions | 621 |
2.3.2.2.1 Asymmetric Michael Addition of Glycine Derivatives | 621 |
2.3.2.2.1.1 Asymmetric Michael Addition of an Alanine Derivative | 622 |
2.3.2.2.1.2 Asymmetric Michael Addition of tert-Butyl 2-(1-Naphthyl)-4,5-dihydrooxazole-4-carboxylate to Ethyl Acrylate | 623 |
2.3.2.2.1.3 Asymmetric Synthesis of (+)-Monomorine | 623 |
2.3.2.2.2 Asymmetric Michael Addition of ß-Keto Esters | 624 |
2.3.2.2.2.1 Asymmetric Michael Addition of ß-Keto Esters to Acetylenic Ketones | 625 |
2.3.2.2.3 Asymmetric Michael Addition of Diethyl Malonate to Chalcone Derivatives | 626 |
2.3.2.2.4 Asymmetric Michael Addition of Nitroalkanes to Alkylidenemalonates | 627 |
2.3.2.2.4.1 Asymmetric Michael Addition of Nitroalkanes to Cyclic a,ß-Unsaturated Ketones | 628 |
2.3.2.2.4.2 Asymmetric Michael Addition of 2-Nitropropane to Chalcone | 628 |
2.3.2.2.5 Asymmetric Michael Addition of Cyanoacetates to Acetylenic Esters | 629 |
2.3.2.2.5.1 Asymmetric Michael Addition of Cyanoacetates to Acetylenic Ketones | 630 |
2.3.2.2.6 Asymmetric Michael Addition of 3-Aryloxindoles to Methyl Vinyl Ketone | 631 |
2.3.2.2.6.1 Asymmetric Michael Addition of 3-Aryloxindoles to Nitroalkenes | 632 |
2.3.2.3 Asymmetric Aldol Reactions | 633 |
2.3.2.3.1 Asymmetric Aldol Reaction of a Glycine Derivative | 633 |
2.3.2.4 Asymmetric Mannich Reactions | 634 |
2.3.2.4.1 Asymmetric Mannich Reaction of a Glycine Derivative | 634 |
2.3.2.4.2 Asymmetric Mannich Reaction of a 3-Phenyloxindole | 635 |
2.3.2.5 Asymmetric Strecker Reactions | 635 |
2.3.2.5.1 Asymmetric Strecker Reaction of Aldimines | 635 |
2.3.2.5.1.1 Asymmetric Strecker Reaction of N-Arylsulfonylated Imines Generated In Situ | 636 |
2.3.2.6 Asymmetric Amination | 637 |
2.3.2.6.1 Asymmetric Amination of ß-Keto Esters | 637 |
2.3.2.7 Asymmetric Fluorination | 639 |
2.3.2.7.1 Asymmetric Fluorination of ß-Keto Esters | 639 |
2.3.2.8 Asymmetric Epoxidation | 641 |
2.3.2.8.1 Asymmetric Epoxidation of a,ß-Unsaturated Ketones | 641 |
2.3.2.9 Asymmetric Neber Rearrangement | 642 |
2.3.2.9.1 Asymmetric Neber Rearrangement of Ketoxime Sulfonates | 642 |
2.3.2.10 Asymmetric Darzens Reactions | 643 |
2.3.2.10.1 Asymmetric Darzens Reaction of Haloamides | 643 |
2.3.3 Computational and Theoretical Studies | 648 |
2.3.3.1 Methodology and Computational Approaches | 648 |
2.3.3.2 Enamine Catalysis | 649 |
2.3.3.2.1 Intramolecular Aldol Reactions | 649 |
2.3.3.2.2 Intermolecular Aldol Reactions | 651 |
2.3.3.2.3 Mannich Reactions | 655 |
2.3.3.2.4 Michael Additions | 656 |
2.3.3.2.5 a-Functionalization of Carbonyl Compounds | 658 |
2.3.3.2.6 .-Functionalization of a,ß-Unsaturated Aldehydes | 659 |
2.3.3.2.7 Organo-SOMO Catalysis | 659 |
2.3.3.3 Iminium Catalysis | 660 |
2.3.3.3.1 Imidazolidinone-Catalyzed Reactions | 660 |
2.3.3.3.2 Iminium Catalysis by Diarylprolinol Silyl Ethers | 661 |
2.3.3.4 Catalysis via Other Types of Lewis Base Activation | 662 |
2.3.3.4.1 Acyl-Transfer Reactions | 662 |
2.3.3.4.2 Carbene-Catalyzed Reactions | 663 |
2.3.3.4.3 Morita--Baylis--Hillman Reactions | 664 |
2.3.3.5 Hydrogen-Bond Catalysis | 665 |
2.3.3.5.1 Thioureas as Hydrogen-Bond Donors | 665 |
2.3.3.5.2 TADDOL-Catalyzed Diels--Alder Reactions | 666 |
2.3.3.5.3 Cationic Hydrogen-Bond Donor Catalysts | 667 |
2.3.3.6 Organocatalysis by Brønsted Bases | 668 |
2.3.3.6.1 Bifunctional Catalysis by Chiral Amines | 668 |
2.3.3.6.2 Guanidines as Bifunctional Organocatalysts | 671 |
2.3.3.7 Organocatalysis by Chiral Brønsted Acids | 672 |
2.3.3.7.1 Asymmetric Addition to Imines | 672 |
2.3.3.7.2 Asymmetric Imine Reduction | 675 |
2.3.3.7.3 Asymmetric Addition to Carbonyls | 675 |
2.3.4 Mechanism in Organocatalysis | 680 |
2.3.4.1 Experimental Methods for Mechanistic Studies in Organocatalysis | 680 |
2.3.4.1.1 Substrate and Product Studies | 681 |
2.3.4.1.2 Catalyst Studies | 682 |
2.3.4.1.2.1 Structure--Performance Relationships | 682 |
2.3.4.1.3 Catalytic Intermediate Studies | 684 |
2.3.4.1.3.1 By NMR Spectroscopy | 684 |
2.3.4.1.3.2 By Mass Spectrometry | 686 |
2.3.4.1.3.3 By X-ray Crystallography | 687 |
2.3.4.1.4 Kinetic Studies | 688 |
2.3.4.1.4.1 Obtaining Kinetic Data | 688 |
2.3.4.1.4.2 Standard Evaluation of Kinetic Data | 689 |
2.3.4.1.4.3 Reaction Progress Kinetic Analysis | 690 |
2.3.4.1.4.4 Kinetic Isotope Effects | 692 |
2.3.4.1.4.5 Hammett Studies | 693 |
2.3.4.1.5 Other Methods | 694 |
2.3.4.1.5.1 Nonlinear Effects in Asymmetric Catalysis | 694 |
2.3.4.1.5.2 Solvent and Water Effects | 696 |
2.3.4.1.5.3 Stereochemical Considerations | 696 |
2.3.4.2 Selected Case Studies | 696 |
2.3.4.2.1 Enamine Catalysis | 696 |
2.3.4.2.1.1 Substrate and Product Studies | 697 |
2.3.4.2.1.2 Catalyst Studies | 698 |
2.3.4.2.1.3 Enamine Formation | 701 |
2.3.4.2.1.4 Enamine Structure | 703 |
2.3.4.2.1.5 Reaction with the Electrophile | 704 |
2.3.4.2.1.6 Kinetic Studies | 706 |
2.3.4.2.1.7 Nonlinear Effects | 707 |
2.3.4.2.2 Iminium Catalysis | 707 |
2.3.4.2.2.1 Catalyst Studies | 708 |
2.3.4.2.2.2 Iminium Formation and Structure | 710 |
2.3.4.2.2.3 Reaction with the Nucleophile | 711 |
2.3.4.2.2.4 Nonlinear Effects | 714 |
2.3.4.2.2.5 Water and Solvent Effects | 714 |
2.3.5 Supported Organocatalysts | 720 |
2.3.5.1 Polymer-Supported Cinchona Alkaloid Amine Catalysts | 720 |
2.3.5.2 Polymer-Supported Proline-Derived Organocatalysts | 724 |
2.3.5.2.1 Cross-Linked Methacrylic Polymer Beads Containing Proline | 725 |
2.3.5.3 Supported Prolinamide Catalysts | 726 |
2.3.5.4 Polymer-Supported Chiral Pyrrolidine Catalysts | 729 |
2.3.5.5 Polymer-Supported Peptides and Poly(amino acids) | 729 |
2.3.5.6 Supported Chiral Quaternary Ammonium Salts | 730 |
2.3.5.6.1 Benzylation of N-(Diphenylmethylene)glycine tert-Butyl Ester Using Polymer-Supported Cinchona Alkaloid Quaternary Ammonium Salts | 731 |
2.3.5.6.2 Benzylation of N-(Diphenylmethylene)glycine tert-Butyl Ester Using Main Chain Chiral Cinchona Alkaloid Quaternary Ammonium Salt Polymers | 733 |
2.3.5.6.3 Epoxidation of Chalcones Using Polymer-Supported Cinchona Alkaloid Quaternary Ammonium Salts | 736 |
2.3.5.7 Supported MacMillan Catalysts | 737 |
2.3.5.8 Supported Chiral Phosphoramides | 739 |
2.3.5.9 Polymer-Supported Chiral Acidic Organocatalysts | 739 |
2.3.6 Organocatalysis Combined with Metal Catalysis or Biocatalysis | 744 |
2.3.6.1 Combination of Phase-Transfer Catalysts with Transition-Metal Complexes | 745 |
2.3.6.2 Combination of Amine Catalysis with Transition-Metal Catalysis | 746 |
2.3.6.2.1 Enamines with p-Allylpalladium Electrophiles | 747 |
2.3.6.2.2 Enamine Catalysis with p-Acid Catalysis | 750 |
2.3.6.2.3 Enamine Catalysis with Photoredox Catalysis | 754 |
2.3.6.2.4 Enamine Catalysis with Rhodium-Catalyzed Hydroformylation | 757 |
2.3.6.2.5 Cinchona Alkaloid Derived Catalysts with p-Acids | 758 |
2.3.6.3 Combination of Brønsted Acids with Transition-Metal Complexes | 760 |
2.3.6.3.1 Cooperative Catalysis of Brønsted Acids with Transition-Metal Complexes | 760 |
2.3.6.3.2 Relay Catalysis of Brønsted Acids with Transition-Metal Complexes | 768 |
2.3.6.4 Combination of Nucleophilic Catalysts with Lewis Acids | 777 |
2.3.6.4.1 Cinchona Alkaloid Derivatives with Lewis Acids | 777 |
2.3.6.4.2 N-Heterocyclic Carbenes with Lewis Acids | 781 |
2.3.6.5 Combination of Organocatalysis with Enzyme Catalysis | 783 |
2.3.7 Peptide Catalysis | 788 |
2.3.7.1 Peptide-Catalyzed Oxidation Reactions | 788 |
2.3.7.1.1 Epoxidation Reactions | 788 |
2.3.7.1.1.1 Juliá--Colonna Epoxidation | 788 |
2.3.7.1.1.2 Other Epoxidations | 796 |
2.3.7.1.2 a-Aminoxylation of Aldehydes | 799 |
2.3.7.1.3 Oxidation of Indoles | 800 |
2.3.7.2 Peptide-Catalyzed Acylation, Phosphorylation, and Sulfonylation | 801 |
2.3.7.2.1 Kinetic Resolution of Alcohols by Acylation | 801 |
2.3.7.2.1.1 Kinetic Resolution of Secondary Alcohols | 801 |
2.3.7.2.1.2 Kinetic Resolution of Tertiary Alcohols | 804 |
2.3.7.2.2 Kinetic Resolution of Thioformamides | 805 |
2.3.7.2.3 Desymmetrization of Prochiral Substrates | 807 |
2.3.7.2.3.1 Remote Desymmetrization of Prochiral Diols by Acylation and Site-Selective Catalysis | 807 |
2.3.7.2.3.2 Desymmetrization of myo-Inositol Derivatives by Phosphorylation | 808 |
2.3.7.2.3.3 Desymmetrization of meso-Diols by Sulfonylation | 809 |
2.3.7.2.4 Multicatalyst Systems for Acylation Followed by Oxidation | 811 |
2.3.7.3 Peptide-Catalyzed C--C Bond-Forming Reactions | 812 |
2.3.7.3.1 Hydrocyanation of Aldehydes | 812 |
2.3.7.3.2 Aldol Reactions | 814 |
2.3.7.3.2.1 Acetone and Cyclic Ketones as Aldol Donors | 814 |
2.3.7.3.2.2 Hydroxyacetone as the Aldol Donor | 817 |
2.3.7.3.3 Conjugate Addition Reactions | 818 |
2.3.7.3.3.1 Conjugate Addition Reactions with Iminium Activation | 818 |
2.3.7.3.3.2 Conjugate Addition Reactions with Enamine Activation | 819 |
2.3.7.3.4 Morita--Baylis--Hillman Reactions | 823 |
2.3.7.3.5 Reactions of Acyl Anion Equivalents | 824 |
2.3.7.3.6 Enantioselective Protonation of Lithium Enolates | 826 |
2.3.7.3.7 Atroposelective Bromination of Biaryl Compounds | 828 |
2.3.8 Organocatalytic Cascade Reactions | 834 |
2.3.8.1 Secondary Amine Catalyzed Cascade Reactions | 834 |
2.3.8.1.1 Enamine Activation | 834 |
2.3.8.1.1.1 Asymmetric Synthesis of Tetrahydro-1,2-oxazine-6-carbaldehydes by a Domino Aminoxylation/Aza-Michael Reaction | 834 |
2.3.8.1.2 Iminium Activation | 836 |
2.3.8.1.2.1 Asymmetric Synthesis of Pyrroloindolines and Furanoindolines by a Domino Michael/Cyclization Reaction | 836 |
2.3.8.1.2.2 Asymmetric Synthesis of 6-Carboxycyclohex-2-en-1-ones by Domino Michael/Wittig or Michael/Knoevenagel Reactions | 839 |
2.3.8.1.3 Activation of Singly Occupied Molecular Orbitals | 842 |
2.3.8.1.3.1 Asymmetric Synthesis of Steroidal Frameworks | 842 |
2.3.8.1.3.2 Asymmetric Synthesis of Cyclohexanecarbaldehydes by a Domino Alkene Addition/Friedel--Crafts Reaction | 846 |
2.3.8.1.4 Iminium--Enamine Activation | 848 |
2.3.8.1.4.1 Asymmetric Synthesis of Cyclopent-1-enecarbaldehydes by a Domino Michael/Aldol Reaction | 848 |
2.3.8.1.4.2 Asymmetric Synthesis of Cyclopentanecarbaldehydes by Domino Double Michael Reaction | 849 |
2.3.8.1.4.3 Asymmetric Synthesis of 2,3-Dihydro-1H-indene-2-carbaldehydes by a Reductive Michael Reaction | 851 |
2.3.8.1.4.4 Asymmetric Synthesis of 2H-1-Benzopyran-3-carbaldehydes by Domino Michael/Aldol Reaction | 853 |
2.3.8.1.4.5 Asymmetric Synthesis of 2H-1-Benzothiopyran-3-carbaldehydes by a Domino Michael/Aldol Reaction | 854 |
2.3.8.1.4.6 Asymmetric Synthesis of 1,2-Dihydroquinoline-3-carbaldehydes by a Domino Michael/Aldol Reaction | 856 |
2.3.8.1.5 Iminium--Allenamine Activation | 857 |
2.3.8.1.5.1 Asymmetric Synthesis of 4H-1-Benzopyran-3-carbaldehydes by a Domino Double Michael Reaction | 857 |
2.3.8.1.6 Enamine--Iminium--Enamine Activation | 859 |
2.3.8.1.6.1 Asymmetric Synthesis of Tetrasubstituted Cyclohexenecarbaldehydes by a Domino Michael/Michael/Aldol Reaction | 859 |
2.3.8.1.6.2 Asymmetric Synthesis of Six-Membered Spirocyclic Oxindoles by a Domino Michael/Michael/Aldol Reaction | 860 |
2.3.8.1.7 Iminium--Enamine--Iminium--Enamine Activation | 863 |
2.3.8.1.7.1 Asymmetric Synthesis of Tetrahydro-6H-dibenzo[b,d]pyrans by a Domino Oxa-Michael/Michael/Michael/Aldol Reaction | 863 |
2.3.8.1.7.2 Asymmetric Synthesis of Polycyclic Spirooxindole Frameworks by a Domino Michael/Michael/Michael/Aldol Reaction | 864 |
2.3.8.2 Primary Amine Catalyzed Cascade Reactions | 866 |
2.3.8.2.1 Enamine--Iminium Activation: Asymmetric Synthesis of Spirocyclic Oxindolic Cyclohexanones by a Domino Double Michael Reaction | 867 |
2.3.8.2.2 Iminium--Enamine Activation: Asymmetric Synthesis of Octahydronaphthalen-2(1H)-ones by a Domino Double Michael Reaction | 870 |
2.3.8.3 Tertiary Amine Catalyzed Cascade Reactions | 871 |
2.3.8.3.1 Cascade Reactions Catalyzed by Cinchona Alkaloids by Covalent Catalysis: Asymmetric Synthesis of Bicyclo[4.1.0]alkane Frameworks by a Nitrogen Ylide Catalyzed Intramolecular Cyclopropanation | 872 |
2.3.8.3.2 Cascade Reactions Catalyzed by Cinchona Alkaloids by Noncovalent Catalysis: Asymmetric Synthesis of Dihydropyrroles | 874 |
2.3.8.4 Brønsted Acid Catalyzed Cascade Reactions | 876 |
2.3.8.4.1 Phosphoric Acid Catalyzed Cascade Reactions | 876 |
2.3.8.4.1.1 Asymmetric Synthesis of 9-(Indol-3-yl)fluorene Derivatives by a Domino Double Friedel--Crafts Reaction | 876 |
2.3.8.4.1.2 Asymmetric Synthesis of Tetrahydro-ß-carboline Derivatives | 880 |
2.3.8.4.1.3 Asymmetric Synthesis of 3-Substituted Cyclohexylamines | 882 |
2.3.8.4.2 Thiourea-Catalyzed Cascade Reactions: Asymmetric Synthesis of Substituted Benzothiopyran-4-ols by a Domino Michael/Aldol Reaction | 885 |
2.3.8.5 N-Heterocyclic Carbene Catalyzed Cascade Reactions | 886 |
2.3.8.5.1 Homoenolate Activation: Asymmetric Synthesis of Bicyclic ß-Lactams by a Domino Benzoin/Oxy-Cope/Mannich Reaction | 886 |
2.3.9 Industrial Applications | 894 |
2.3.9.1 Historical Background | 894 |
2.3.9.2 Kinetic Resolution and Desymmetrization | 895 |
2.3.9.2.1 Kinetic Resolution of Urethane-Protected a-Amino Acid N-Carboxyanhydrides | 895 |
2.3.9.2.2 Asymmetric Synthesis of a Methyl (S)-4-(4-Fluorophenyl)-6-oxo-1,4,5,6-tetrahydropyridine-3-carboxylate by Desymmetrization | 897 |
2.3.9.3 Asymmetric Phase-Transfer-Catalyzed Alkylations | 899 |
2.3.9.3.1 Synthesis of an Enantioenriched a-Amino Acid by Phase-Transfer-Catalyzed Alkylation with a Cinchona Alkaloid | 899 |
2.3.9.3.2 Novel Asymmetric Phase-Transfer Catalysts for Practical Synthesis of Unnatural Amino Acids | 902 |
2.3.9.4 Asymmetric Aldol Reactions, Mannich Reactions, and Michael Additions | 906 |
2.3.9.4.1 Practical Asymmetric Synthesis of a Key Building Block for an HIV Protease Inhibitor by the Proline-Catalyzed Direct Cross-Aldol Reaction | 906 |
2.3.9.4.2 Asymmetric Synthesis of a Key Building Block for Maraviroc by a Proline-Catalyzed Mannich Reaction of Acetaldehyde | 908 |
2.3.9.4.3 Asymmetric Synthesis of a Pharmaceutical Intermediate by Michael Addition of a Dialkyl Malonate | 909 |
2.3.9.4.4 Efficient Synthesis of ( )-Oseltamivir by an Organocatalyzed Michael Reaction of an Aldehyde and a Nitroalkene | 911 |
2.3.9.5 Organocatalyzed Asymmetric Epoxidations | 913 |
2.3.9.5.1 Practical Procedure for the Large-Scale Preparation of Methyl (2R,3S)-3-(4-Methoxyphenyl)oxirane-2-carboxylate, a Key Intermediate for Diltiazem | 913 |
2.3.9.5.2 Approach to a Chiral Lactone: Application of the Shi Epoxidation | 914 |
2.3.9.6 Diastereoselective and Enantioselective Aza-Henry Reaction | 915 |
2.3.9.7 Enantioselective Organocatalytic Amine Conjugate Addition | 916 |
2.3.9.8 Enantioselective Friedel--Crafts Reaction | 919 |
2.3.9.9 Asymmetric Hydrocyanation and Strecker Reactions | 920 |
2.3.9.10 Future Prospects | 921 |
2.4 Future Perspectives | 924 |
2.4.1 Future Perspectives for Lewis Base and Acid Catalysts | 924 |
2.4.2 Future Perspectives for Brønsted Base and Acid Catalysts, and Additional Topics | 925 |
Keyword Index | 928 |
Author Index | 990 |
Abbreviations | 1016 |
List of All Volumes | 1022 |