Was ist eigentlich eine „Konstruktion“ und wie erstellt man diese? Je nachdem, wen man fragt, wird man die unterschiedlichsten Antworten bekommen. Die ältere Generation wird sich noch an Zeiten erinnern, zu denen Konstruktionen mit Zeichenbrett, Lineal, Bleistift und Tuschefüller erstellt wurden. Die jüngeren unter euch kennen nur noch digitale 2D- oder 3D-Konstruktionen, die mit einer CAD-Software am Desktop-Computer erstellt werden. Und manche von euch werden vielleicht sagen: Muss ich mich denn überhaupt noch mit Konstruktion beschäftigen, wenn mir bereits so viele fertige und kostenlos verfügbare Modelle im Internet zur Verfügung stehen? Ich sage: Wenn du kreativ sein willst, dann solltest du etwas von guter Konstruktion verstehen.
Den Begriff „Konstruktion“ kann man wie folgt definieren: Konstruieren heißt, den Entwurf eines technischen Produkts so auszuarbeiten, dass dieser gefertigt werden kann. Hierzu werden Technische Zeichnungen, Zusammenstellungszeichnungen oder Montageanleitungen erstellt. In der Technischen Zeichnung ist das Einzelteil dargestellt und mit Material-, Bearbeitungs-, Maß- und Toleranzangaben1 sowie Bezugsquellen für Materialien versehen.
Wenn man sich an die Beschreibung der Rapid Prototyping-Verfahren in Abschnitt 2.1 erinnert, sind hierfür nur 3D-Geometrie-Daten essentiell. Das heißt, zum Erstellen von 3D-gedruckten Werkstücken ist nur ein Teil der kompletten Konstruktionsarbeit notwendig, da keine Zeichnungen der Einzelteile mit Material-, Bearbeitungs-, Maß- und Toleranzangaben erforderlich sind. Möchte man ein 3D-Druck-Teil jedoch weiterbearbeiten oder mit anderen Teilen verbinden, dann sind die Maß- und Toleranzangaben sehr wohl von Belang.
Das 3D-Drucken bietet zwei riesige Vorteile gegenüber den klassischen Fertigungsverfahren.
Zum einen lassen sich Hohlkörper aus einem Teil fertigen, z. B. eine Hohlkugel. Eine Hohlkomponente kann weder an der Drehbank noch durch Fräsen aus einem Teil gefertigt werden, da das Werkzeug nicht in das Innere des Werkstücks gelangen kann (Bild 3.1). Mit Rapid-Prototyping-Verfahren wie z. B. dem 3D-Druck ist es kein Problem, eine Hohlkugel herzustellen, weil das Werkstück Schicht für Schicht aufgebaut wird.
Bild 3.1 Werkzeug (Drehmeißel) in der Hohlkugel
Zum anderen können am Werkstück extreme Hinterschnitte realisiert werden. Als Anschauungsbeispiel soll das Teil aus Bild 3.2 dienen. Dieses Teil kann weder durch Drehen noch durch Fräsen aus einem Teil gefertigt werden, da das Werkzeug nicht in den Hinterschnitt des Werkstückes gelangen kann. Mit dem 3D-Druck-Verfahren ist dies kein Problem, weil das Werkstück Schicht für Schicht aufgebaut wird.
Bild 3.2 Werkstück mit extremen Hinterschnitt
Zusammenfassend kann man sagen, dass man seiner Kreativität bei der Konstruktion von 3D-Druck-Teilen beinahe freien Lauf lassen kann. Die einzigen Teile, die nicht mit der FFF-Technologie gefertigt werden können, sind Werkstücke, die auf inkohärenten 3D-Modellen beruhen. Das sind Geometrien, die keine eindeutige Geometriebeschreibung haben, oder deren Volumen oder Wandstärke gleich null ist.
Doch auch, wenn so gut wie alles in einem 3D-Modell nachgebildet werden kann, ist nicht jedes Gebilde gleich gut für die Fused Filament Fabrication geeignet. Dieses Kapitel zeigt dir, wie du 3D-Druck-gerecht konstruierst, und so die Basis für stabile und weiterbearbeitbare Objekte schaffst.
Die Konstruktionshinweise verfolgen zwei Ziele: Zum einen soll das 3D-Modell gute Ergebnisse beim 3D-Druck sicherstellen, d. h., die Konstruktion soll so gewählt sein, dass das Objekt ohne große parametrische2 Kunstgriffe mit dem 3D-Drucker gefertigt werden kann. Das zweite Ziel ist, die Konstruktion so auslegen, dass ein stabiles Werkstück entsteht, das nach dem 3D-Druck noch gut nachgearbeitet werden kann. Dazu gehört z. B., dass das Objekt nach dem FDM-Prozess in einen Schraubstock eingespannt werden kann, ohne dass es zerbricht.
3.1 | Der Weg vom CAD-Modell zum 3D-gedruckten Teil |
Um den Zusammenhang und die Abhängigkeiten zwischen der FFF-Technologie und dem 3D-Modell besser erklären zu können, zeigt Bild 3.3 den Weg vom CAD-Modell zum 3D-gedruckten Werkstück erst einmal kurz in der Übersicht.
Bild 3.3 Vom CAD-Modell zum 3D-gedruckten Werkstück
Als Erstes wird das 3D-Modell im Slicer (CAM-Programm) in Schichten (Layer) zerlegt. Jeder Layer wird wiederum mit Materialschlangen aufgefüllt. Mit diesen Geometrieinformationen wird ein CNC-Programm (G-Code) erstellt. Das reale Werkstück wird schichtweise auf der heat plate bzw. dem heat bed (= Heizplatte, Heizbett, Bauplattform) aufgebaut. Hierzu wird in einem Extruder, bestehend aus Heizspirale sowie Filament- und evtl. Supportvorschub, das Filament teigig aufgeschmolzen und als Materialschlange oder -wurst aufgetragen. Damit eine komplette Materialschicht entsteht, muss der Extruder und/oder das Heizbett eine x- und y-Bewegung ausführen. Wenn eine Schicht fertig ist, wird das heat bed um eine Schicht nach unten verfahren (oder der Extruder um eine Schicht nach oben gefahren) und der nächste Layer wird aufgetragen.
Bild 3.4 veranschaulicht das Prinzip des 3D-Druck-Prozesses. Hier verfährt nur der Extruder in x- und y-Richtung. Es gibt aber einige 3D-Drucker, bei denen das heat bed die x- und y-Bewegung ausführt. Am weitesten verbreitet ist eine „Aufteilung“ der Verfahrrichtungen, d. h., die eine Raumrichtung (z. B. die x-Bewegung) vollführt der Extruder und die andere Raumrichtung (y-Bewegung) wird durch das Heizbett bewerkstelligt. Darüber hinaus werden von einigen Herstellern Tripods angeboten, bei denen alle Bewegungen vom Extruder ausgeführt werden. Um die weiteren Beschreibungen allgemein zu halten, kommt die Bezeichnung „Extruder und/oder Heizbett“ zum Tragen.
Bild 3.4 Prinzip des 3D-Druck-Prozesse
Für alle folgenden (Prinzip-)skizzen werden der Übersichtlichkeit halber immer die gleichen Farben für die gleichen Komponenten verwendet. In Tabelle 3.1 ist die Farbfestlegung aufgeführt.
Tabelle 3.1 Definition der Komponenten eines 3D-Druckers
heat plate, heat bed, build platform (Heizplatte, Heizbett, Bauplattform) | hellgrau |
(Filament-)Bauteil | dunkelblau |
(Filament-)Support | hellblau |
Bewegung des Extruders, Filament | hellgrün |
Im Folgenden wollen wir theoretisch erarbeiten, wie das aufgeschmolzene Filament aus der Düse des Extruders austritt und zu einer Materialschlange am heat bed wird (Bild 3.5).
Bild 3.5 Heatbed mit „Materialschlange“
Der Volumenstrom V1 aus Material (aufgeschmolzenes Filament) an der Düse muss genauso groß sein wie der Volumenstrom V2 der Materialschlange auf der Heizplatte. Ist nun die Fördergeschwindigkeit des Extruders genauso groß wie die Verfahrgeschwindigkeit von heat plate und/oder Extruder, so sind die beiden Querschnittsflächen (Filament am Austritt der Düse und der Materialwurst) gleich groß. Betrachtet man die Fläche an der Düse, so handelt es sich hier um eine Kreisfläche, während die Fläche der Materialschlange am Heizbett angenähert eine Langlochfläche darstellt. Diese Fläche wird dadurch erzeugt, dass die Materialschlange auf das heat bed gedrückt wird. Die Verformungskräfte der Materialwurst werden durch den Materialbogen aufgenommen. Nur durch diesen Vorgang haftet die erste Materialebene auf der Aufbauplattform und alle weiteren Materialschlangen einer Ebenen haften auf der darunter liegenden Materialebene.
Hierfür folgt nun ein kleines Beispiel, um sich die Dimensionen der Materialwurst bei 3D-Drucken vor Augen zu führen.
Durchmesser der Düse des Extruders: d = 0,3 mm
Layerdicke (Schichtdicke einer Materialebene): h = 0,1 mm
Auszurechnen ist die...