Kapitel 2
Energiestoffwechsel
Die muskuläre Leistungsfähigkeit hängt bei längeren körperlichen oder sportlichen Belastungen von einer ständigen Energieversorgung ab. Um im Bedarfsfall sofort reagieren zu können, hat jede Muskulatur eigene Energiereserven, die Energiespeicher (Tab. 1/2).
ENERGIESPEICHER
Der Energiegewinn aus Adenosintriphosphat (ATP) und Kreatinphosphat (CP) ist für Kurzzeitbelastungen unerheblich. Die ATP-Speicher sind so klein, dass sie nur für wenige Muskelkontraktionen oder 1-2 s Belastung alleine reichen. Mit dem CP-Speicher sind maximale Schnelligkeitsleistungen bis etwa 6-8 s Dauer möglich. Der Abruf der Energiespeicher erfolgt bei Belastungsbeginn übergreifend parallel, in einer bestimmten zeitlichen Folge.
Tab. 1/2: Verfügbare Energiesubstrate und Energieproduktionsrate (70 kg Körpergewicht und 28 kg Muskelmasse). Nach HULTMAN & GRENHAFF (2000)
Energiespeicher und Abbau | Verfügbare Energiemenge (mol) | Energiebildungsrate (mol/min) |
ATP, PCr > ADP, Cr | 0,67 | 4,40 |
Muskelglykogen > Laktat | 6,70* (~ 1,6) | 2,35 |
Muskelglykogen > CO2 | 84 | 0,85-1,14 |
Leberglykogen > CO2 | 19 | 0,37 |
Fettsäuren > CO2 | 4.000* | 0,40 |
* Diese Stoffwechselwege sind während sportlicher Belastung nicht voll nutzbar.
Tab. 2/2: Nutzbare Energiespeicher bei Dauerbelastungen
Energiespeicher | Speichergröße (g) | Theoretischer Energiegewinn (kcal) |
Glykogen (Muskel) | 400 | 1.620 |
Triglyzeride (TG) im Muskel | 200-300 | 1.860-2.790 |
TG im Unterhaut- und Organfett | 8.000 | 74.400 |
Zuerst wird der Abbau der energiereichen Phosphatspeicher (ATP, CP) gestartet und dann beginnt sofort der Glykogenabbau. Ist die Belastung intensiv, dann muss das Glykogen anaerob, d. h. mit Laktatbildung verbunden, abgebaut werden. Bei moderaten Dauerbelastungen kommt keine Laktatbildung zu Stande, d. h. keine Glykolyse. Das Glykogen wird hierbei aerob abgebaut.
Da die muskulären Energiespeicher begrenzt sind, wird die Energiezufuhr bei längeren Belastungen von Substraten gestützt, die außerhalb der Muskulatur liegen und über das Blut antransportiert werden (Tab. 2/2). Dazu zählen das Glykogen in der Leber und dann die freien Fettsäuren aus dem Unterhautfettgewebe oder den Fettspeichern in den Körperorganen. Zudem hat die Muskulatur ihren eigenen Fettspeicher, die Triglyzeride (Neutralfette). Die Aufgabe des Leberglykogens besteht darin, den Blutzuckerspiegel (Blutglukose) ständig auf einem Niveau von 4-5 mmol/l (72-90 mg/dl) zu halten. Ist das bei längeren Belastungen nicht möglich, weil die Reserven aufgebraucht sind, dann kann es zur Unterzuckerung (Hypoglykämie) kommen. Die direkt im Blut umlaufende Menge an Glukose ist mit 5-7 g gering. Umgangssprachlich wird eine Hypoglykämie als „Hungerast“ bezeichnet, besonders im Straßenradsport. Die ständige Aufrechterhaltung der Blutglukosekonzentration in einem Normbereich ist deshalb so wichtig, weil Gehirn und Kleinhirn für ihre Funktion auf die Glukoseversorgung angewiesen sind.
WIRKUNGSGRAD
Der Quotient aus Arbeit und Energieverbrauch wird als Wirkungsgrad (Eta) bezeichnet. Für den Wirkungsgrad bei der Muskelarbeit gibt es zahlreiche Definitionen und Berechnungsverfahren (LUHTANEN et al., 1987). Der bei der Fahrrad-Ergometrie gebräuchliche Begriff des Wirkungsgrads lässt sich nicht direkt auf das Laufen übertragen. Beim Laufen ist keine direkte Leistung erfassbar, sondern nur die Laufgeschwindigkeit. Um trotzdem eine veränderte Laufökonomie zu kennzeichnen, wurde der Begriff Wirkungsindex vorgeschlagen (CAVANAGH & KRAM, 1985; SIMON, 1998). Eine andere praktische Lösung schlägt DI PRAMPERO (1986) vor, der die Sauerstoffaufnahme (VO2) einfach zur Laufgeschwindigkeit (v) in Beziehung setzt und als Energieverbrauchsmaß kennzeichnet.
Demnach ist das Energieverbrauchsmaß der Quotient aus Sauerstoffaufnahme (VO2) und Laufgeschwindigkeit (km/h). Als Maßeinheit des Quotienten würde das VO2 ml min*km/h ergeben.
Die Zunahme des Wirkungsgrads einer Muskelarbeit äußert sich im höheren kalorischen Äquivalent, d. h., bei einer vergleichbaren submaximalen Leistung nimmt der Energieaufwand ab. Auf sportliche Belastungen übertragen, bedeutet das die Abnahme der Sauerstoffaufnahme bei submaximaler Leistung. Die Zunahme des Wirkungsgrads ist nicht nur an der Sauerstoffabnahme und am niedrigeren respiratorischen Quotienten (RQ) zu erkennen, sondern auch am veränderten Regulationsverhalten von Atmung, Herz-Kreislauf-System und Stoffwechsel.
Die dem Muskel angebotene Energie über die Energieträger Glukose und freie Fettsäuren (FFS) kann nur zu 18-23 % in mechanische Arbeit umgesetzt werden. Demnach wird der größere Teil (77-88 %) als Wärme frei. Die Wärmefreisetzung wird beim Sport als Schwitzen wahrgenommen. Durch Ausdauertraining verbessert sich der Wirkungsgrad der Muskelarbeit, er kann nach mehrjährigem Leistungstraining im Radsport von 19 % bis auf 23 % ansteigen (Abb. 1/2).
Muskulärer Wirkungsgrad (Eta in %)
Abb. 1/2:Veränderung des muskulären Wirkungsgrads (Eta h) bei Eliteradsportlern über drei Trainingsjahre. Im Untersuchungszeitraum kam es zur Verbesserung des Wirkungsgrads von 19 % auf 22 %. Eigene Daten.
Der Wirkungsgrad der Muskelarbeit verbessert sich bevorzugt beim sportartspezifischen Training, welches mit Widerstand (Kraft) ausgeführt wird. Bei unspezifischem Training oder häufigem Sportartenwechsel verändert sich der Wirkungsgrad kaum. Der muskuläre Wirkungsgrad eines Sportlers ist stets höher als der eines Untrainierten bei vergleichbarer Belastung. Die Verbesserung des Wirkungsgrades lässt sich bei Leistungsradsportlern an der Abnahme der Sauerstoffaufnahme auf submaximalen Belastungsstufen erkennen (Abb. 2/2).
Muskulärer Wirkungsgrad (Eta) und Sauerstoffaufnahme bei 270 W
Abb. 2/2:Beziehung zwischen Wirkungsgrad (h) und Sauerstoffaufnahme bei Eliteradsportlern. Mit der Verbesserung des Wirkungsgrads nimmt die Sauerstoffaufnahme bei 270 W Ergometerleistung ab. Eigene Daten
Der Wirkungsgrad berechnet sich:
Tab. 3/2:Beispiel für Wirkungsgradberechnung bei Ergometrie
Bei einer Ergometerleistung von 280 W/min werden bei einem kalorischen Äquivalent von 0,95 genau 3,83 l Sauerstoff aufgenommen. Das entspricht einem Energieverbrauch von 80,24 kJ (19,2 kcal). | 280 W = 280 J/s entsprechen in 60 s (1 min) = 16.800 J (16,8 kJ). | Wirkungsgrad (h) ist dann: 16,8 : 80,24 x 100 % = 20,94 % |
ENERGETISCHE SICHERUNG DER MUSKELARBEIT
Bei der Muskelkontraktion wird das energiereiche ATP in die energieärmere Phosphatverbindung Adenosindiphosphat (ADP) abgebaut. Die dabei frei werdende Energie wird für die Muskelarbeit genutzt. Für den Wiederaufbau (Resynthese) des ADP zu ATP stehen mehrere Möglichkeiten zur Verfügung. Bei den für die Resynthese vorhandenen Substraten handelt es sich um: Kreatinphosphat, Glukose, freie Fettsäuren und einige Aminosäuren, die zu Glukose umgewandelt werden können.
Dauer und Intensität (Geschwindigkeit) der Muskelbelastung bestimmen, welche von den Substraten zur ATP-Resynthese genutzt werden (Abb. 3/2).
Abb. 3/2:Energiegewinn aus den verfügbaren Substarten. Die ATP-Bildungsraten für die Muskelarbeit erfolgen aus den verfügbaren Substraten unterschiedlich schnell. Sie sind aus ATP und Kreatinphosphat am höchsten und aus Fettsäuren am niedrigsten. Die Resynthese aus ADP und anorganischem Phosphat (Pi) zu ATP erfolgt unter anaeroben Bedingungen am schnellsten (höchste ATP-Bildungsrate). ATP-Bildungsraten modifiziert nach: Greenhaff, Hultman & Harris (2004).
Für die schnelle ATP-Resynthese eignet sich bei längeren Intensivbelastungen nur das Muskelglykogen, welches über die Glykolyse abgebaut wird.
Der Energiegewinn kann mit und ohne muskuläre Sauerstoffversorgung erfolgen, d. h. aerob und anaerob. Ohne ausreichende Sauerstoffversorgung...