Sie sind hier
E-Book

Mathematik für Informatiker

Mit Anwendungen in der Computergrafik und Codierungstheorie

AutorRolf Socher
VerlagCarl Hanser Fachbuchverlag
Erscheinungsjahr2011
Seitenanzahl306 Seiten
ISBN9783446427143
FormatPDF
KopierschutzWasserzeichen/DRM
GerätePC/MAC/eReader/Tablet
Preis19,99 EUR
Keine Angst vor der Mathematik! Dieses Buch vermittelt auf anschauliche und anwendungsorientierte Weise die mathematischen Inhalte, die Sie für Ihr Informatikstudium benötigen. Dabei wird großer Wert auf den Praxisbezug der mathematischen Inhalte gelegt. Es wird jeweils anhand einer konkreten Aufgabenstellung der Informatik das mathematische Handwerkszeug entwickelt, das zur Lösung dieser Aufgabe erforderlich ist. So werden Themen der linearen Algebra im Hinblick auf Anwendungen in der Computergrafik erläutert. Aufgabenstellungen der Zeit- und Kalenderrechnung sowie der Kryptografie dienen zur Veranschaulichung der modularen Arithmetik.

Eine große Menge an erprobten Beispielen, Übungsaufgaben und Programmierprojekten trägt zum vertieften Verständnis des Stoffes bei.

Kaufen Sie hier:

Horizontale Tabs

Leseprobe
"2 Mengen und Relationen (S. 42-44)

2.1 Mengen


In jeder Wissenschaft müssen die verwendeten Begriffe erklärt und möglichst formal definiert werden. Insbesondere in der Mathematik erwarten wir präzise und exakte Definitionen. Was ist eine Primzahl? Eine Primzahl ist eine natürliche Zahl größer als 1, die nur durch 1 und sich selbst teilbar ist. Das ist präzise und für jeden verständlich, der weiß, was „teilbar“ bedeutet. Was heißt teilbar? Eine ganze Zahl a ist durch eine ganze Zahl b teilbar, wenn es eine ganze Zahl n gibt, sodass a = n·b ist.

Das versteht jeder, der weiß, was ganze Zahlen sind, und das Multiplikationszeichen kennt. Und so kann man immer weiterfragen, wie es Kinder gerne tun. Aber das kann doch nicht ewig weitergehen?! Irgendwann sind wir bei so einfachen und elementaren Begriffen angelangt, dass es keine noch einfacheren Begriffe gibt, auf die man sie zurückführen könnte. Ein solch grundlegender und elementarer Begriff der Mathematik ist der Begriff der Menge. Er lässt sich nicht weiter aus noch einfacheren Begriffen definieren. Der Begründer der Mengenlehre, Georg Cantor1, schrieb den berühmten Satz „Eine Menge ist eine Zusammenfassung von bestimmten wohlunterschiedenen Objekten unserer Anschauung oder unseres Denkens (welche die ‚Elemente‘ der Menge genannt werden) zu einem Ganzen.“

Dabei handelt es sich jedoch nicht um eine formale mathematische Definition, denn es wird lediglich ein undefinierter Begriff „Menge“ durch einen anderen undefinierten Begriff „Zusammenfassung“ ersetzt. Wichtig in dieser Beschreibung ist jedoch das Adjektiv „wohlunterschieden“, das besagt, dass keine Elemente einer Menge mehrfach vorkommen. Die einfachste Art, eine Menge hinzuschreiben, besteht darin, ihre Elemente mit Komma getrennt aufzuzählen und das Ganze in geschweifte Klammern zu packen:

M = {Anne, Boris, Claudia, Dirk}. Man könnte auch M = {Boris, Anne, Dirk, Claudia} schreiben. Auf die Reihenfolge, in der wir die Elemente hinschreiben, kommt es nicht an. Sie können sogar

M = {Boris, Anne, Boris, Dirk, Claudia, Anne} schreiben. Das wäre nicht falsch, sondern einfach nur ungeschickt.

Wir schreiben x ∈ M, falls x ein Element von M ist, andernfalls x ∉ M. Im obigen Beispiel gilt etwa Boris ∈ M und Franziska ∉ M. Stellen Sie sich vor, Sie hätten das Amt des Kassenwarts eines Schachvereins zu übernommen. Ihnen obliegt es nun unter anderem, die Mitgliederlisten zu 2.1 Mengen führen. Sicherlich ist es sinnvoll, diese irgendwie zu ordnen, beispielsweise alphabetisch nach dem Nachnamen oder nach einer vereinsinternen Mitgliedsnummer.

Aber für den Verein an sich, das heißt, für die Menge seiner Mitglieder, spielt es keine Rolle, wie Sie intern Ihre Listen sortiert haben. Natürlich würden Sie keine Mitglieder doppelt eintragen, aber dieser Fehler passiert trotzdem immer wieder. Das ist im Allgemeinen nicht weiter schlimm, es bedeutet allenfalls, dass der- oder diejenige beim nächsten Rundschreiben zwei Briefe bekommt. Die Anzahl der Elemente einer endlichen Menge M heißt Mächtigkeit von M und wird mit
Blick ins Buch
Inhaltsverzeichnis
Vorwort6
Inhalt8
1 Aussagenlogik10
1.1 Aussagen und logische Junktoren10
1.2 Rechnen mit logischen Formeln16
1.3 Normalformen und Vereinfachung von Formeln23
1.4 Beweisverfahren34
2 Mengen und Relationen43
2.1 Mengen43
2.2 Mengenoperationen49
2.3 Relationen55
3 Funktionen und Abzählbarkeit65
3.1 Funktionen65
3.2 Injektive, surjektive und bijektive Funktionen und dieUmkehrfunktion71
3.3 Endliche und unendliche Mengen75
4 Kombinatorik80
4.1 Die Summen- und die Produktregel80
4.2 Permutationen und geordnete Auswahl ohneWiederholung84
4.3 Die Binomialzahlen87
4.4 Ungeordnete Auswahl mit Wiederholung91
5 Teilbarkeit und modulare Arithmetik93
5.1 Teilbarkeit und euklidischer Algorithmus94
5.2 Primzahlen und Primfaktorzerlegung101
5.3 Modulare Arithmetik104
5.4 Die modulare Inverse109
5.5 Rechnen in Zm111
5.6 Der RSA-Algorithmus117
6 Algebraische Strukturen:Gruppen, Ringe und Körper122
6.1 Gruppen122
6.2 Ringe und Körper129
6.3 Polynome131
7 Graphen137
7.1 Grundlegende Definitionen137
7.2 Wege, Kreise und Komponenten eines Graphen140
7.3 Färbungen von Graphen146
7.4 Bäume und Graphenalgorithmen148
7.5 Boy meets girl: Bipartite Graphen156
8 Analytische Geometrie in der Ebene163
8.1 Einführung163
8.2 Vektoren164
8.3 Winkel, Skalarprodukt und Determinante172
8.4 Lösung des Problems „Wohin klickt die Maus?“176
8.5 Geraden180
9 Analytische Geometrie im Raum189
9.1 Vektoren im Raum189
9.2 Ebenen192
9.3 Spatprodukt, lineare Unabhängigkeit von 3 Vektoren,Basen201
10 Lineare und affine Abbildungen204
10.1 2-D-Transformationen in der Computergrafik204
10.2 Lineare Abbildungen und Matrizen207
10.3 3-D-Transformationen216
10.4 Affine Abbildungen und homogene Koordinaten222
10.5 Inverse Abbildungen227
11 Vektorräume230
11.1 Einführung230
11.2 Vektorräume und Unterräume233
11.3 Basis, Dimension und lineare Unabhängigkeit237
12 Lineare Abbildungen und Matrizen248
12.1 Lineare Abbildungen248
12.2 Matrizen zur Darstellung linearer Abbildungen255
13 Der Gauß-Algorithmus265
13.1 Berechnung des Rangs einer Matrix265
13.2 Berechnung der Inversen einer Matrix270
13.3 Lösen linearer Gleichungssysteme273
14 Fehlerkorrigierende Codes281
14.1 Grundbegriffe281
14.2 Lineare Codes286
14.3 Konstruktion linearer Codes288
Zum Weiterlesen293
Symbolverzeichnis294

Weitere E-Books zum Thema: Mathematik - Algorithmik - Arithmetik

Operations Research

E-Book Operations Research
Linearoptimierung Format: PDF

Linearoptimierung wird als mathematische Methode innerhalb des Operations Research bei der Mengenplanung für Absatz und Produktion sowie für Transport-, Netzfluss- oder Maschinenbelegungs-Probleme…

Operations Research

E-Book Operations Research
Linearoptimierung Format: PDF

Linearoptimierung wird als mathematische Methode innerhalb des Operations Research bei der Mengenplanung für Absatz und Produktion sowie für Transport-, Netzfluss- oder Maschinenbelegungs-Probleme…

Operations Research

E-Book Operations Research
Linearoptimierung Format: PDF

Linearoptimierung wird als mathematische Methode innerhalb des Operations Research bei der Mengenplanung für Absatz und Produktion sowie für Transport-, Netzfluss- oder Maschinenbelegungs-Probleme…

Gewöhnliche Differenzialgleichungen

E-Book Gewöhnliche Differenzialgleichungen
Differenzialgleichungen in Theorie und Praxis Format: PDF

Im Anschluss an Vorlesungen in Analysis und Linearer Algebra folgen an nahezu allen technischen und wirtschaftswissenschaftlich orientierten Studiengängen an Hochschulen und Universitäten als eine…

Mathematik für Informatiker

E-Book Mathematik für Informatiker
Format: PDF

Die Informatik entwickelt sich in einer unglaublichen Geschwindigkeit. Häufig ist die Mathematik Grundlage von Neuerungen. Deshalb ist sie unverzichtbares Werkzeug jedes Informatikers und Pflichtfach…

Mathematik für Informatiker

E-Book Mathematik für Informatiker
Format: PDF

Die Informatik entwickelt sich in einer unglaublichen Geschwindigkeit. Häufig ist die Mathematik Grundlage von Neuerungen. Deshalb ist sie unverzichtbares Werkzeug jedes Informatikers und Pflichtfach…

Mathematik für Informatiker

E-Book Mathematik für Informatiker
Format: PDF

Die Informatik entwickelt sich in einer unglaublichen Geschwindigkeit. Häufig ist die Mathematik Grundlage von Neuerungen. Deshalb ist sie unverzichtbares Werkzeug jedes Informatikers und Pflichtfach…

Weitere Zeitschriften

arznei-telegramm

arznei-telegramm

Das arznei-telegramm® informiert bereits im 53. Jahrgang Ärzte, Apotheker und andere Heilberufe über Nutzen und Risiken von Arzneimitteln. Das arznei-telegramm®  ist neutral und ...

Augenblick mal

Augenblick mal

Die Zeitschrift mit den guten Nachrichten "Augenblick mal" ist eine Zeitschrift, die in aktuellen Berichten, Interviews und Reportagen die biblische Botschaft und den christlichen Glauben ...

Baumarkt

Baumarkt

Baumarkt enthält eine ausführliche jährliche Konjunkturanalyse des deutschen Baumarktes und stellt die wichtigsten Ergebnisse des abgelaufenen Baujahres in vielen Zahlen und Fakten zusammen. Auf ...

cards Karten cartes

cards Karten cartes

Die führende Zeitschrift für Zahlungsverkehr und Payments – international und branchenübergreifend, erscheint seit 1990 monatlich (viermal als Fachmagazin, achtmal als ...

caritas

caritas

mitteilungen für die Erzdiözese FreiburgUm Kindern aus armen Familien gute Perspektiven für eine eigenständige Lebensführung zu ermöglichen, muss die Kinderarmut in Deutschland nachhaltig ...

DSD Der Sicherheitsdienst

DSD Der Sicherheitsdienst

Der "DSD – Der Sicherheitsdienst" ist das Magazin der Sicherheitswirtschaft. Es erscheint viermal jährlich und mit einer Auflage von 11.000 Exemplaren. Der DSD informiert über aktuelle Themen ...

IT-BUSINESS

IT-BUSINESS

IT-BUSINESS ist seit mehr als 25 Jahren die Fachzeitschrift für den IT-Markt Sie liefert 2-wöchentlich fundiert recherchierte Themen, praxisbezogene Fallstudien, aktuelle Hintergrundberichte aus ...

Evangelische Theologie

Evangelische Theologie

Über »Evangelische Theologie« In interdisziplinären Themenheften gibt die Evangelische Theologie entscheidende Impulse, die komplexe Einheit der Theologie wahrzunehmen. Neben den Themenheften ...