Sie sind hier
E-Book

Perspektiven für den Mathematikunterricht an einer Schule zur Lernförderung: Mit aktiv-entdeckendem Lernen zum Erfolg im Erstrechnen

AutorJulia Bockisch
VerlagDiplomica Verlag GmbH
Erscheinungsjahr2014
Seitenanzahl127 Seiten
ISBN9783842841871
FormatPDF
Kopierschutzkein Kopierschutz/DRM
GerätePC/MAC/eReader/Tablet
Preis24,99 EUR
Das vorliegende Buch setzt sich kritisch mit der gegenwärtigen Praxis und zukunftsweisenden Perspektiven des Mathematikunterrichts an Schulen zur Lernförderung in Sachsen auseinander. Ausgehend von den Herausforderungen des mathematischen Erstunterrichts und möglichen Schwierigkeiten im Rechnen Lernen werden Anforderungen an die Mathematikdidaktik abgeleitet und ein revidiertes Verständnis vorgestellt. Theoretische Grundlage bildet dabei die konstruktivistische Sicht von Lernprozessen. Es wird verdeutlicht, dass es sich beim aktiv-entdeckenden Mathematikunterricht (nach 'mathe 2000'), um einen vielversprechenden und förderrelevanten Ansatz für den Förderschwerpunkt Lernen sowie für den Umgang mit Leistungsheterogenität handelt. Eine empirische Untersuchung zeigt auf, inwiefern die Variablen Lehrplan, das Lehrmaterial Klick! Mathematik 1, die didaktische Einstellung sowie das Unterrichtsverhalten der Lehrkräfte den bestehenden Entwicklungsbedarf bei der Umsetzung eines aktiv-entdeckenden Mathematikunterrichts an der Schule zur Lernförderung erklären. Die Ergebnisse legen dar, wie neben konstruktivistischen Bemühungen eine sonderpädagogische Didaktik mit Kernelementen, wie der Isolierung der Schwierigkeiten oder dem mechanischen Üben und der Reduktion, fortbesteht.

Kaufen Sie hier:

Horizontale Tabs

Leseprobe
Textprobe: Kapitel 2.1.2, Entwicklungsverläufe: Trotz mehr als hundertjähriger Forschung bezüglich der Frage, wie sich das Verständnis von Zahlen, Mengen und Rechenoperationen entwickelt, lässt sich diese bis heute nicht eindeutig beantworten. Von einem geschlossenen Entwicklungsmodell kann daher nicht die Rede sein (vgl. GERLACH 2007, 6, Online im Internet). Besonders einflussreich waren in den Sechziger- und Siebzigerjahren Piagets Erkenntnisse zur Herausbildung der Zahlvorstellung bei Kindern. Er machte es sich zur Aufgabe, den logischen und den psychologischen Zugang zur Zahl zusammenzuführen. Der Entwicklungspsychologe definiert die Zahl als ordinal und kardinal zugleich, stellt also keinen Aspekt in den Vordergrund. Piaget versteht den Zahlbegriffserwerb als operativen Prozess, bei dem eine Synthese des kardinalen und ordinalen Aspekts erfolgt. Dementsprechend ist dieses Verständnis äußerst anspruchsvoll: Da Kinder erst im Alter von etwa sieben bis elf (auf der konkret-operationalen Stufe) über solche Operationsleistungen verfügen, haben sie auch erst dann den Zahlbegriff endgültig erworben. Eine herausragende Rolle spielt für Piaget der Begriff der Invarianz. Dabei geht es um die Einsicht, dass die Quantität einer Menge durch Transformationen wie Umschütten oder Vertauschen der Elemente unverändert bleibt. Die geistigen Aktivitäten, die für diese Invarianzaufgaben nötig sind, werden seiner Auffassung nach als Grundlage jedes Denkprozesses betrachtet und sind folglich als Voraussetzung für den Zahlbegriffserwerb zu sehen (vgl. MOSER OPITZ 2008, 33). Piagets Theorie erklärt den Erwerb des Zahlbegriffs aber nur unzureichend, vor allem die Bedeutung der Zahlinvarianz wird heute durch zahlreiche Befunde in Frage gestellt (vgl. ebd. 62). Säuglings- und Kleinkindstudien können belegen, dass Mathematiklernen von Geburt an stattfindet und angeborene bereichsspezifische Fähigkeiten im Entwicklungsverlauf ausgebaut und differenziert werden (vgl. GERLACH 2007, 36?39, Online im Internet). Die erläuterten Aspekte des Zahlverständnisses gründen auf unterschiedlichen, genetisch vorbereiteten kognitiven Schemata. Demnach gilt es, gewisse Muster, die in Ansätzen angelegt sind, im Verlauf der vorschulischen und schulischen Entwicklung auszubauen und miteinander zu verbinden. Der Prozess der Zahlbegriffsentwicklung folgt also keinem linearen Verlauf. Aufgrund der vielfältigen Zahlaspekte, die nicht nur erworben, sondern auch in Beziehung gesetzt werden müssen, ist der Entwicklungsverlauf nur schwer zu fassen und lässt sich nicht einfach durch das Erreichen einzelner Stufen erklären. Oft bleibt die Zahlbegriffsentwicklung anfänglich auch nur auf einen kleineren Zahlenraum beschränkt. Kinder machen also beispielsweise für die Zahlen oder Mengen von Eins bis Drei Entwicklungsfortschritte, die sie aber noch nicht auf größere Zahlen übertragen können. Diese Sachverhalte verdeutlichen, dass die Lernverläufe bezüglich der Zahlbegriffe am ehesten durch Wellenbewegungen beschrieben werden können. In der Folge ist auch Piagets Modell der Zahlbegriffsentstehung zu hinterfragen. Die von ihm beschriebenen Prinzipien sind sehr abstrakt und gelten eher für einen idealen Zahlbegriff. Sinnvolles Rechnen ist jedoch auch schon in Entwicklungsstadien möglich, in denen streng genommen nicht alle Piaget-Kriterien erfüllt sind. Unabhängig davon, welche Entwicklungsreihenfolge angenommen oder welchem Zahlaspekt mehr Bedeutung beigemessen wird, erfordert ein umfassendes Zahlverständnis grundsätzlich die Verfügbarkeit über Zahlwortreihe, Ordnungs- als auch Mengenvorstellungen. Die vollständige Integration aller Teilaspekte zu einem umfassenden Zahlbegriff erfolgt erst im Verlauf der Schulzeit (vgl. ebd., 9). Auch wenn sich allgemeingültige Erklärungsprinzipien zur Entwicklung von mathematischem Wissen und des Zahlbegriffs finden lassen, so durchläuft doch jedes Kind ganz unterschiedliche Lernprozesse. Dieser individuelle Entwicklungsprozess umfasst die ersten Lebensjahre und wird mit dem Ende der Kindheit und dem Beginn der Jugendphase im Wesentlichen abgeschlossen. Verschiedene Alltagssituationen machen dem Kind grundlegende kognitive Operationen wie Seriation, Klassifikation und Invarianz bewusst. Bei allen Untersuchungen zu den Entwicklungsetappen mathematisch relevanter Begriffe lässt sich kein eindeutiges Ergebnis für die Rangfolge von Ordination, Kardination und Zahlinvarianz ableiten. Festhalten lässt sich: - 'Die Ordination entwickelt sich vor der Kardination. -Ordnungszahlaspekte werden früher erworben als einfache Formen der Addition und Subtraktion. -Kinder können Additions- und Subtraktionsaufgaben im Zahlenraum bis 10 lösen, bevor sie die Kardination verstehen. [...]. -Es führen verschiedene Entwicklungswege zum Zahlbegriff' (Werner 2007, 580 f). Es wird vermutet, dass das Zählen eine entscheidende Rolle bei der Entwicklung des Zahlbegriffs spielt.
Blick ins Buch
Inhaltsverzeichnis
Perspektiven für den Mathematikunterricht an einer Schule zur Lernförderung1
Zusammenfassung3
Inhaltsverzeichnis4
I Einleitung7
II Theoretischer Hintergrund10
1 Begriffsbestimmungen10
1.1 Sonderpädagogischer Förderbedarf im Förderschwerpunkt „Lernen“10
1.2 Schwierigkeiten im Rechnenlernen12
1.3 Zusammenfassung15
2 Herausforderungen für den mathematischen Erstunterricht an der Schule zur Lernförderung16
2.1 Zahlbegriffserwerb16
2.2 Zählen20
2.3 Vorwissen bei Schulbeginn24
2.4 Spezifische Schwierigkeiten im Erstrechnen26
2.5 Zusammenfassung26
3 Didaktische Folgerungen für den mathematischen Erstunterricht an der Schule zur Lernförderung28
3.1 Traditionelle und gegenwärtige Mathematikdidaktik28
3.2 Ein revidiertes Verständnis von Mathematikdidaktik32
3.3 Zusammenfassung34
4 Aktiv-entdeckendes Lernen im Mathematikunterricht35
4.1 Historische und theoretische Grundlagen des aktiv-entdeckenden Lernens35
4.2 Das Forschungs- und Entwicklungsprojekt „mathe 2000“37
4.3 Realisierung an der Schule zur Lernförderung47
4.4 Zusammenfassung54
III Darstellung der empirischen Untersuchung56
5 Ableitung von Fragestellungen56
6 Methodik58
6.1 Forschungsdesign58
6.2 Untersuchungs- und Auswertungsinstrumente59
6.3 Stichprobe66
7 Ergebnisdarstellung69
7.1 Lehrplananalyse69
7.2 Analyse des Lehrmaterials „Klick! Mathematik 1“70
7.3 Fragebogen über die Einstellung der Lehrkraft73
7.4 Unterrichtsanalyse79
8 Interpretation der Ergebnisse84
9 Beantwortung der Fragestellungen88
10 Reflexion91
IV Fazit und Konsequenzen93
V Verzeichnisse96
Literaturverzeichnis96
Internetquellenverzeichnis99
Tabellenverzeichnis101
Anhangsverzeichnis102
A Analysebogen Lehrplan/Klick!/Unterrichtsbeobachtung103
B Fragebogen zur Einstellung einer Mathematiklehrkraft an der Schule zur Lernförderung zu Mathematik, Lernen und Lehren105
C Itemaufschlüsselung110
D Leitfaden: Befragung der Lehrkraft zum Unterricht113
E Ergebnisse Lehrplananalyse114
F Ergebnisse Analyse „Klick! Mathematik 1“118
G Transkription Reflexionsgespräche122

Weitere E-Books zum Thema: Pädagogik - Erziehungswissenschaft

Weitere Zeitschriften

BONSAI ART

BONSAI ART

Auflagenstärkste deutschsprachige Bonsai-Zeitschrift, basierend auf den renommiertesten Bonsai-Zeitschriften Japans mit vielen Beiträgen europäischer Gestalter. Wertvolle Informationen für ...

dental:spiegel

dental:spiegel

dental:spiegel - Das Magazin für das erfolgreiche Praxisteam. Der dental:spiegel gehört zu den Top 5 der reichweitenstärksten Fachzeitschriften für Zahnärzte in Deutschland (laut LA-DENT 2011 ...

DGIP-intern

DGIP-intern

Mitteilungen der Deutschen Gesellschaft für Individualpsychologie e.V. (DGIP) für ihre Mitglieder Die Mitglieder der DGIP erhalten viermal jährlich das Mitteilungsblatt „DGIP-intern“ ...

Die Versicherungspraxis

Die Versicherungspraxis

Behandlung versicherungsrelevanter Themen. Erfahren Sie mehr über den DVS. Der DVS Deutscher Versicherungs-Schutzverband e.V, Bonn, ist der Interessenvertreter der versicherungsnehmenden Wirtschaft. ...

dima

dima

Bau und Einsatz von Werkzeugmaschinen für spangebende und spanlose sowie abtragende und umformende Fertigungsverfahren. dima - die maschine - bietet als Fachzeitschrift die Kommunikationsplattform ...

e-commerce magazin

e-commerce magazin

e-commerce magazin Die Redaktion des e-commerce magazin versteht sich als Mittler zwischen Anbietern und Markt und berichtet unabhängig, kompetent und kritisch über ...

EineWelt

EineWelt

Lebendige Reportagen, spannende Interviews, interessante Meldungen, informative Hintergrundberichte. Lesen Sie in der Zeitschrift „EineWelt“, was Menschen in Mission und Kirche bewegt Man kann ...

FileMaker Magazin

FileMaker Magazin

Das unabhängige Magazin für Anwender und Entwickler, die mit dem Datenbankprogramm Claris FileMaker Pro arbeiten. In jeder Ausgabe finden Sie von kompletten Lösungsschritten bis zu ...