Der Mathematikunterricht der Grundschule zeichnet sich, gegenüber anderen Fächern, durch einige Besonderheiten aus, welche „ […] bei Nichtbeachtung zu Verständnisschwierigkeiten beim Mathematiklernen führen können.“ (SCHULZ 1995, 22) Dem Rechnen liegen sehr komplexe Leistungen zugrunde und weiter gilt Mathematiklernen als ein Entwicklungsprozess, wobei verschiedene Stufen durchlaufen werden (vgl. ebd.). „Solche Stufen verstehen sich als theoretische Konstruktionen, die den Entwicklungsverlauf für den Beobachter strukturieren und transparent machen.“ (ebd.) Die Mathematik verfügt über mathematische bzw. theoretische Begriffe, welche durch Konstruktionen im Denken entstehen und oftmals auf Handlungen bzw. Operationen basieren, die wiederum den Abstraktionsprozess determinieren (vgl. a.a.O., 24f.).
Als Mittel zur Beschreibung und Darstellung von abstrakten Sachverhalten dient die eigene Symbolsprache der Mathematik, welche die Kinder von Anfang an kennen lernen, die ihnen aber auch gewisse Schwierigkeiten bringen kann, da diese spezifische Arbeitsweise erst erlernt werden muss (vgl. a.a.O., 25f.).
Abstraktionsvermögen ist gerade beim Mathematiklernen von großer Bedeutung, da Begriffe, Sätze, Regeln und Verfahren der Mathematik abstraktes Denken verlangen und Vorstellungen voraussetzen (vgl. a.a.O., 26).
Des Weiteren wirkt die Hierarchie des Mathematikstoffes viel stärker und nachhaltiger als in anderen Schulfächern, so dass sich Vorkenntnislücken verheerend auf die weiteren Inhalte auswirken können (vgl. a.a.O., 27).
Das mathematische Denken umfasst das geometrische und numerische Denken, sowie deren Vorstellung und baut sich auf der Grundlage von Raum, Zeit und Sprache auf (vgl. METZLER 2001, 31). Die drei voneinander abhängigen Bereiche, in denen die Entwicklung des mathematischen Denkens verläuft, sind (nach GRISSEMANN & WEBER 1982) Klassenbildung, Schaffung von dynamischen Relationen und Zahlen (vgl. ebd.). Diese Bereiche bilden eine Struktur, welche funktionelle Prozesse voraussetzt (vgl. ebd.).
„Unabhängig von jeweils verwendeten Schulbuch, der favorisierten Methodik und dem aktuellen Inhalt durchläuft sowohl der arithmetische Anfangsunterricht als auch der Mathematikunterricht der weiterführenden Klassen bestimmte Phasen.“ (LORENZ 2003a, 23) Zu Beginn geht es um das konkrete Handeln und dem Operieren mit verschiedenen Materialien (Stufe 1), bis hin zum bildhafteren, abstrakteren, statistischen Darstellungen im Schulbuch, an der Tafel etc., welche in eine ziffernmäßige Form übertragen werden (Stufe 2) (vgl. ebd.). In der 3. Stufe sollte sich eine gewisse Vorstellung bereits im Kopf des Kindes eingestellt haben, so dass auf das Material und dessen Umgang verzichtet und der Unterricht auf den reinen Ziffernumgang verkürzt werden kann. Anschließend sollen die mathematischen Operationen automatisiert werden (Stufe 4) (vgl. ebd.). Im Folgenden wird die Verfasserin die vier Stufen der Verinnerlichung etwas genauer vorstellen.
Diese erste Stufe der Verinnerlichung bildet die Grundlage für alle folgenden mathematischen Lern- und Denkprozesse (vgl. METZLER 2001, 34). Sie ist geprägt durch das Handeln mit konkreten Gegenständen „ […] wie dem Hinzutun (Addition), dem Wegnehmen (Subtraktion), der Wiederholung von gleichen Handlungen (Multiplikation), dem Ver- und Aufteilen von Mengen (Division) oder anderen Operationen [...] (LORENZ 2003a, 24).“ Zum Teil wird mit realen Gegenständen gearbeitet, wobei bei einigen Inhalten auch manipulierbare Gegenstandssymbole ausgewählt werden (vgl. SCHULZ 1995, 42).
Zum Einen wird in dieser ersten Phase die motorische Ausführung verlangt, zum Anderen muss das Kind fähig sein, „ [...] die einzelnen Teilschritte in der Vorstellung vorwegzunehmen, damit die geforderte Handlung durchgeführt werden kann.“ (ebd.) Die bereits vollzogenen Teilschritte müssen, nach Beendigung der Handlung, erinnert und die Handlung in visuelle Vorstellung zurückgeholt werden (vgl. LORENZ 2003a, 24).
Treten hierbei Probleme auf, „ [...] so haben Kinder schon mit dem Zählen, dem Ab- und Zuzählen im ersten Zehnerraum, mit dem Überschreiten des Zehners und dem Aufbau des Hunderters Schwierigkeiten.“ (METZLER 2001, 33) Wichtig ist weiter, dass das Kind nicht nur das Zählen erlernt, sondern auch eine Vorstellung von der Zahl gewinnt und mit dieser etwas verbinden kann (vgl. ebd.). „Die für den weiteren Aufbau- bzw. Verinnerlichungsprozesses schwerwiegendsten Schwächen sind wohl die im Bereich des Zahlenbegriffes und des Zählens.“ (a.a.O., 34)
Die Operation wird bildlich dargestellt bzw. die konkrete Handlung wird durch Niederschreiben anhand der mathematischen Symbole vertieft (vgl. a.a.O., 35). „Diese Darstellung besteht in einer zeichnerischen Abbildung der Mengengestalten und einer Andeutung der Operation durch graphische Zeichen und Markierungshilfen.“ (GRISSEMANN & WEBER 20004, 13) Die dreidimensionale Gegenständlichkeit wird auf eine zweidimensionale reduziert und die Operationsabläufe müssen nun im Kopf vorgestellt werden, was einen Schritt im Verinnerlichungsprozess bewirkt (vgl. ebd.). Das Kind „ […] muss in der Lage sein, sich den gemeinten Handlungsablauf (in dem die arithmetische Operation, der mathematische Begriff enthalten ist) in die visuelle Anschauung zu holen.“ (LORENZ 2003a, 26)
Einige Kinder haben hier Schwierigkeiten, da sie mit den Symbolen der Addition, Subtraktion etc. nichts anfangen können (vgl. METZLER 2001, 35). Es ist möglich, dass Schüler „ [...] lediglich automatisiert versuchen, bildhafte Anweisungen in Zifferngleichungen zu übertragen, ohne die Beziehung verstanden zu haben.“ (LORENZ 2003a, 26)
Nach der bildlich- graphischen Darstellung einer Operation folgt nun die zeichenmäßig- symbolische Darstellung in Form von Zifferngleichung (vgl. GRISSEMANN & WEBER 20004, 13). Voraussetzung hierfür ist, „ […] daß Ziffern und Zeichen in ihrer Bedeutung erfaßt werden konnten, indem sie sowohl den Handlungen als auch den bildlichen Darstellungen richtig zugeordnet wurden.“ (SCHULZ 1995, 43)
Das Kind arbeitet nun gänzlich ohne Konkretes, wobei ihm lediglich die mathematische Formel zur Lösung der Aufgabe zur Verfügung steht (vgl. METZLER 2001, 35). Die Darstellung muss auch hier mit der zugehörigen Handlung verknüpft werden, da es sonst bei einer bedeutungsarmen Symbolik bliebe, „ [...] die sich in einer sinnentleerten Ziffernmanipulation ohne Realbezug erschöpft“ (LORENZ 2003a, 26) Zwar tritt die visuelle Vorstellungsfähigkeit in dieser Phase des Verinnerlichungsprozesses zurück, doch der Ziffernbezug zur jeweiligen Handlung ist dennoch erforderlich, da das Kind darauf jederzeit zurückgreifen können muss (vgl. ebd.). Gefordert wird hier neben dem Symbolverständnis, auch das Kurz- sowie das Langzeitgedächtnis (vgl. ebd.).
Durch nicht gesicherte Basisfunktionen (Stufe 1 und 2), einer Schwäche im Kurzzeitgedächtnis oder einer Abstraktionsschwäche können sich hier Schwierigkeiten beim Kind zeigen (vgl. METZLER 2001, 35).
Die vierte Stufe des Verinnerlichungsprozesses kann nur erfolgen, wenn das Kind die vorhergegangenen drei Phasen erfolgreich integriert und verinnerlicht hat (vgl. ebd.). Zwar stellt die Automatisierung eine kurzfristige Anforderung an das Kurz- und Langzeitgedächtnis, doch sie beinhaltet vor allem eine Entlastung und Erleichterung komplexer Rechenaufgaben (vgl. ebd.). „Erst nach den drei ersten Verinnerlichungsstufen „ [...] soll die Übung zur Automatisierung im Zeichenbereich erfolgen, welche eine weitere Entlastung bedeutet und komplexe Problemlösungen unter Verwendung verschiedener Operationen erleichtert.“ (GRISSEMANN & WEBER 20004, 14) Die Automatisierung erfolgt, „ […] damit der Rechenvorgang entlastet wird und Berechnungen des kleinen Einmaleins oder im Zahlenraum bis 20 nicht ausgeführt werden müssen.“ (LORENZ 2003a, 27)
„Diese Automatisierung ist notwendig, um einen flüssigen Ablauf von Operationen bei Anwendungen zu gewährleisten...