Sie sind hier
E-Book

Einstieg in die Datenanalyse mit SPSS

AutorMarco Schuchmann
VerlagBooks on Demand
Erscheinungsjahr2016
Seitenanzahl172 Seiten
ISBN9783741257704
FormatePUB
KopierschutzWasserzeichen
GerätePC/MAC/eReader/Tablet
Preis6,49 EUR
Dieses Buch dient zum Einstieg in SPSS und zeigt anhand von Beispielen, wie man verschiedene Methoden der Statistik in SPSS anwenden kann. Dabei werden Interpretationshilfen der SPSS-Ausgaben gegeben und es werden diverse Testverfahren mit Beispielen beschrieben. Anhand der Beispiele wird dann auch erklärt, wie man den p-Wert interpretieren kann und welche Schlüsse sich dadurch ergeben. Im Vordergrund stehen dabei die Anwendungen von Verfahren der größtenteils schließenden und beschreibenden Statistik, weniger die graphischen Möglichkeiten. Es werden aber auch Diagramme erstellt und beschrieben, wie beispielsweise der Boxplot. Die Ausgaben und die Tests werden so erklärt, dass sie für Sozialwissenschaftlerinnen und Sozialwissenschaftler oder für Wirtschaftswissenschaftlerinnen und Wirtschaftswissenschaftler verständlich sein sollen. Für diejenigen, die eine weiterführende mathematische Erläuterung haben möchten, wurde jeweils ein Abschnitt 'Für mathematisch Interessierte' eingebaut. Hier werden dann die Größen der SPSS-Ausgabe näher untersucht und es werden auch mathematische Erklärungen gegeben. Wer diese nicht benötigt, kann die entsprechenden Passagen überspringen. Die Ausgaben und die Erklärung der Menüführung wurden auf der Basis der Version 22 erstellt. Es werden aber auch Anmerkungen zur Verwendung von älteren Menüs gegeben. Lernvideos zum Buch finden Sie unter www.statistikpaket.de/SPSS-Videos.html.

Dr. rer. nat. Marco Schuchmann hat in Darmstadt Mathematik studiert und ist an der Hochschule Darmstadt im Fachbereich Mathematik und Naturwissenschaften angestellt. Hier hält er u.a. Mathematikvorlesungen über Themen, wie z.B. Wavelets und auf dem Gebiet der mathematischen Statistik. Seit 1996 veröffentlicht er mathematische Fachbücher.

Kaufen Sie hier:

Horizontale Tabs

Leseprobe

2 Univariate Statistiken und Diagramme


In diesem Kapitel berechnen wir zunächst Kenngrößen einer einzelnen Stichprobe bzw. so genannte empirische Kenngrößen, wie beispielsweise den Mittelwert. Diese können, unter gewissen Voraussetzungen, als Schätzer für „theoretische“ Kenngrößen einer Zufallsvariablen verwendet werden, wie beispielsweise für den Erwartungswert.

2.1 Berechnung von Kenngrößen


Gegeben sei folgende Stichprobe: 167,163,155,167,161,177,173,179. Diese Werte könnten als Körpergrößen von zufällig ausgewählten Schülern einer Schule interpretiert werden.

Die folgenden Daten werden zunächst in SPSS eingegeben.

v1
167
163
155
167
161
177
173
179

Kenngrößen können wir auch über das Menü für Häufigkeitstabellen auswählen. Wir wählen → AnalysierenDeskriptive StatistikenHäufigkeiten und dort wählen wir v1 aus. Man könnte auch unter →Deskriptive StatistikenDeskriptive Statistiken wählen, nur hier wird kein Median unter "Optionen" angeboten.

Danach klicken wir auf →Statistiken im selben Fenster und hier erscheint dann folgendes (wir haben schon einige Kenngrößen ausgewählt, die Sie auch wählen können):

Wir klicken auf →Weiter und dann auf Diagramme, wo wir ein Histogramm auswählen.

Histogramme sind für metrische Werte geeignet, gerade wenn viele verschiedene Werte auftreten können, aber nicht für jede einzelne Ausprägung ein Balken, wie bei Balkendiagrammen, erscheinen soll.

Balkendiagramme eigenen sich für ordinale oder nominale Daten und Kreisdiagramme für nominale Daten, bei nicht zu vielen Ausprägungen.

Wir klicken nach der Diagrammauswahl auf →Weiter und dann auf →OK.

Statistiken

Körpergröße

N Gültig

 Fehlend

Mittelwert

Median

Modalwert

Standardabweichung

Varianz

Minimum

Maximum

Perzentile 25

 50

 75

8

0

167,7500

167,0000

167,00

8,20714

67,357

155,00

179,00

161,5000

167,0000

176,0000

Die Ausgabe der Tabelle hätte man auch unterdrücken können (im Menü zu Tabellen den Haken bei „Tabelle anzeigen“ deaktivieren).

Körpergröße

Der Mittelwert liegt bei 167,75cm und der Median bei 167cm, womit ca. die bzw. mindestens die Hälfte der Personen bis zu 167cm groß waren. Der Median ist das 50% Quartil. Da Werte mehrfach vorkommen können, können auch deutlich mehr als 50% der Werte kleiner oder gleich dem (empirischen) Median sein. Im Beispiel sind 62,5% kleiner oder gleich 167cm (siehe Häufigkeitstabelle oben).

Analog gibt es das 25% Quartil, welches hier bei 161,5cm liegt, womit ca. ¼ der Personen bis zu 161,5cm groß waren (hier waren es sogar genau 25%, je nachdem wie groß die Stichprobe ist und wie viele Werte mehrfach vorkommen gibt es Abweichungen zu den %-Zahlen der Quartile).

Die untere Grafik kann mit einem Doppelklick auf selbige bearbeitet werden. D.h. man kann beispielsweise mit einem Doppelklick auf die y-Achse die Skalierung einstellen (den Bereich, der angezeigt wird, aber auch Schrittweiten für die Beschriftung), was ähnlich wie in Excel geht.

Wie man sieht, sind mehr Kenngrößen zur Beurteilung einer Stichprobe notwendig, als nur der Mittelwert. Z.B. hätten die beiden Stichproben 170, 169, 171 und 170, 150, 190 beide denselben Mittelwert, nämlich 170, aber die zweite Stichprobe hat eine deutlich größere Standardabweichung. An der Standardabweichung kann man schon mal erkennen, in wie weit der Mittelwert als Vorhersagewert für eine Beobachtung geeignet ist. Wenn der Mittelwert von Jahreseinkommen 40.000€ ist und die Standardabeichung 100€, dann liegen die Werte (Jahreseinkommen) relativ nahe beieinander, wenn diese aber 30000€ beträgt, gibt es eine beachtliche Streuung.

Nehmen wir einmal 10 Personen, 9 haben 0€ auf ihrem Konto, eine hat 1.000.000€. Im Mittel hat jeder 100.000€. Die Streuung wäre riesig. Betrachtet man hier den Median, der unempfindlich gegenüber Ausreißern ist, dann beträgt dieser 0€. Damit weiß man, dass mindestens 50% der Personen höchstens 0€ hatten. Auch das 75% Quartil wäre 0€, womit man weiß, dass mindestens 75% der Personen 0€ hatten. Dadurch kann man schon eher eine Stichprobe beurteilen, als nur über den Mittelwert. Man könnte zur graphischen Beurteilung auch einen Boxplot oder ein Histogramm erstellen, was wir nach dem Teil für "mathematisch Interessierte" im Beispiel tun.

Für mehr mathematisch Interessierte folgt eine genauere Betrachtung der Kenngrößen:

Ganz oben ist der Stichprobenumfang zu finden, den wir im Folgenden mit n bezeichnen. Die Beobachtungen der Stichprobe werden mit xi (i = 1, 2, …, n) bezeichnet. Die Stichprobe ist dann x1, x2, …, xn.

Hier sind einige Kenngrößen von Stichproben zu sehen:

Das arithmetische Mittel:

Die empirische Varianz:

Die empirische Standardabweichung:

Der kleinste und größte Stichprobenwert:

min(xi) und max(xi).

Der empirische Median (eine Möglichkeit der Berechnung):

Hierzu wird zunächst die Stichprobe x1, x2, xn geordnet in x(1), x(2), ..., x(n). Nun kann der empirische Median berechnet werden.

Falls n gerade ist gilt: = (x(n/2) + x(n/2+1))/2

Falls n ungerade ist gilt: = x((n+1)/2)

Ist z.B. die Stichprobe 165, 168, 185, dann ist der Median 168 (n ist ungerade, „es gibt eine Mitte“). Wäre 168, 170, 172, 180 die Stichprobe, dann ist der Median (170+172)/2 = 171.

Weitere Kenngrößen sind der empirische Variationskoeffizient die empirische Schiefe und die empirische Wölbung (engl. skewness & kurtosis):

Bei symmetrischen Verteilungen nimmt die Schiefe den Wert 0 an. Da es sich jeweils um die entsprechenden empirischen Werte, also um Schätzer der theoretischen Kenngrößen handelt, ist der Wert bei Stichproben, die aus Realisierungen von symmetrisch verteilten Zufallsvariablen bestehen, nicht automatisch gleich Null. Ist die Abweichung vom Wert 0 zu groß, so ist dies ein Hinweis darauf, dass die theoretische Verteilung nicht symmetrisch sein könnte. Die Schiefe ist - wie die Wölbung - dimensionslos. Die Wölbung einer normalverteilten Zufallsvariable hat den Wert 3, während der Exzess hier den Wert 0 annimmt.

Wir erstellen noch einen Boxplot. Dazu wählen wir: →DiagrammeAlte DialogfelderBoxplot. Bei älteren SPSS Versionen müssen Sie statt →Diagramme den Menüpunkt →Grafik wählen.

Hier können Sie →Einfach und Auswertung über verschiedene Variablen auswählen und auf →Definieren klicken. Wir haben zwar nur eine Variable für den Boxplot, wir müssen aber nicht mehrere auswählen. Wenn man den Punkt Auswertung über Kategorien einer Variablen auswählt, muss man mindestens eine Variable auswählen, die die Gruppen definiert, z.B. das Geschlecht, was wir noch gleich sehen werden.

Wählen Sie nun im Menü unter „Box entspricht“ Ihre Variable Körpergröße bzw. v1 aus und dann →OK.

Die Grafik, die sie dann sehen, könnten Sie auch nach einem Doppelklick auf selbige bearbeiten (Achsen formatieren, …).

Die Box verläuft vom 25% Quartil (q25) bis zum 75% Quartil (q75). Die Box umfasst damit ca. 50% der Stichprobenwerte (die mittleren ca. 50%). Es sind keine Ausreißer vorhanden. Diese wären oberhalb oder unterhalb der Whiskers, d.h. der Linien, die oben und unten von der Box weg verlaufen und diese würden mit einem Kringel und der Nummer der Beobachtung gekennzeichnet werde. Es könnten auch extreme Werte vorhanden sein, die mit einem Stern gekennzeichnet werden.

Hier sind mehr Details dazu:

Die...

Blick ins Buch

Weitere E-Books zum Thema: Statistik - Algorhitmen

Wahrscheinlichkeitstheorie

E-Book Wahrscheinlichkeitstheorie
Format: PDF

Dieses Lehrbuch bietet eine umfassende moderne Einführung in die wichtigsten Gebiete der Wahrscheinlichkeitstheorie und ihre maßtheoretischen Grundlagen. Themenschwerpunkte sind: Ma…

Fathom 2

E-Book Fathom 2
Eine Einführung Format: PDF

Fathom 2 ist eine einzigartige dynamische Stochastik- und Datenanalysesoftware, die den besonderen Bedürfnissen der schulischen und universitären Lehre gerecht wird und die hier erstmals in deutscher…

Fathom 2

E-Book Fathom 2
Eine Einführung Format: PDF

Fathom 2 ist eine einzigartige dynamische Stochastik- und Datenanalysesoftware, die den besonderen Bedürfnissen der schulischen und universitären Lehre gerecht wird und die hier erstmals in deutscher…

Fathom 2

E-Book Fathom 2
Eine Einführung Format: PDF

Fathom 2 ist eine einzigartige dynamische Stochastik- und Datenanalysesoftware, die den besonderen Bedürfnissen der schulischen und universitären Lehre gerecht wird und die hier erstmals in deutscher…

Schwingungen mechanischer Antriebssysteme

E-Book Schwingungen mechanischer Antriebssysteme
Modellbildung, Berechnung, Analyse, Synthese Format: PDF

Das Buch stellt systematische Methoden zur Modellbildung von Antriebssystemen dar und erläutert diese sowohl grundsätzlich bei Torsions- und Biegeschwingern, als auch speziell am Beispiel von Kranen…

Schwingungen mechanischer Antriebssysteme

E-Book Schwingungen mechanischer Antriebssysteme
Modellbildung, Berechnung, Analyse, Synthese Format: PDF

Das Buch stellt systematische Methoden zur Modellbildung von Antriebssystemen dar und erläutert diese sowohl grundsätzlich bei Torsions- und Biegeschwingern, als auch speziell am Beispiel von Kranen…

Schwingungen mechanischer Antriebssysteme

E-Book Schwingungen mechanischer Antriebssysteme
Modellbildung, Berechnung, Analyse, Synthese Format: PDF

Das Buch stellt systematische Methoden zur Modellbildung von Antriebssystemen dar und erläutert diese sowohl grundsätzlich bei Torsions- und Biegeschwingern, als auch speziell am Beispiel von Kranen…

Schwingungen mechanischer Antriebssysteme

E-Book Schwingungen mechanischer Antriebssysteme
Modellbildung, Berechnung, Analyse, Synthese Format: PDF

Das Buch stellt systematische Methoden zur Modellbildung von Antriebssystemen dar und erläutert diese sowohl grundsätzlich bei Torsions- und Biegeschwingern, als auch speziell am Beispiel von Kranen…

Schwingungen mechanischer Antriebssysteme

E-Book Schwingungen mechanischer Antriebssysteme
Modellbildung, Berechnung, Analyse, Synthese Format: PDF

Das Buch stellt systematische Methoden zur Modellbildung von Antriebssystemen dar und erläutert diese sowohl grundsätzlich bei Torsions- und Biegeschwingern, als auch speziell am Beispiel von Kranen…

Schwingungen mechanischer Antriebssysteme

E-Book Schwingungen mechanischer Antriebssysteme
Modellbildung, Berechnung, Analyse, Synthese Format: PDF

Das Buch stellt systematische Methoden zur Modellbildung von Antriebssystemen dar und erläutert diese sowohl grundsätzlich bei Torsions- und Biegeschwingern, als auch speziell am Beispiel von Kranen…

Weitere Zeitschriften

AUTOCAD Magazin

AUTOCAD Magazin

Die herstellerunabhängige Fachzeitschrift wendet sich an alle Anwender und Entscheider, die mit Softwarelösungen von Autodesk arbeiten. Das Magazin gibt praktische ...

BIELEFELD GEHT AUS

BIELEFELD GEHT AUS

Freizeit- und Gastronomieführer mit umfangreichem Serviceteil, mehr als 700 Tipps und Adressen für Tag- und Nachtschwärmer Bielefeld genießen Westfälisch und weltoffen – das zeichnet nicht ...

BONSAI ART

BONSAI ART

Auflagenstärkste deutschsprachige Bonsai-Zeitschrift, basierend auf den renommiertesten Bonsai-Zeitschriften Japans mit vielen Beiträgen europäischer Gestalter. Wertvolle Informationen für ...

Card Forum International

Card Forum International

Card Forum International, Magazine for Card Technologies and Applications, is a leading source for information in the field of card-based payment systems, related technologies, and required reading ...

Courier

Courier

The Bayer CropScience Magazine for Modern AgriculturePflanzenschutzmagazin für den Landwirt, landwirtschaftlichen Berater, Händler und generell am Thema Interessierten, mit umfassender ...

Deutsche Hockey Zeitung

Deutsche Hockey Zeitung

Informiert über das nationale und internationale Hockey. Die Deutsche Hockeyzeitung ist Ihr kompetenter Partner für Ihren Auftritt im Hockeymarkt. Sie ist die einzige bundesweite Hockeyzeitung ...

die horen

die horen

Zeitschrift für Literatur, Kunst und Kritik."...weil sie mit großer Aufmerksamkeit die internationale Literatur beobachtet und vorstellt; weil sie in der deutschen Literatur nicht nur das Neueste ...